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Questions are not widely used in our literature. The typical 
paper in fluid mechanics, or in science and engineering 
generally, contains not a single question. It is possible that 
people wish, subconsciously, to appear knowlegeable, and 
that posing questions for which they have no answers pro
duces a sense of uncomfortable vulnerability. There are suc
cess stories at both ends of the spectrum. Willard Gibb's 
seminal paper on Equilibrium, all 250 pages, has no questions. 
But the famous "Hilbert Problems," twenty-three questions 
posed in a 1900 paper by David Hilbert, have had a tremen
dous impact on the direction of mathematics, and on the 
careers of numerous mathematicians. To eschew questions is 
probably eminently inefficient. 

While we all wish to be on the cutting edge of our respective 
research activities, very few of us have vision acute enough to 
choose the crucial issues to address, or the questions to ask, in 
the course of problem definition. Our dilemma is intensified 
because the thought processes by which the most prescient 
among us identify and select key questions is usually not 
described. We do not know the weight that chance and ex
perience carry in those processes. 

Collectively, the scientific community is quick to recognize 

a major area of worthwhile research in the wake of a signifi
cant breakthrough, for example the superconductivity 
discoveries of the last two years. It is easy to jump on a band
wagon, more difficult to predict the arrival of that bandwagon 
years in advance. What questions in Onnes's mind urged him 
to investigate superconductivity in the early years of this cen
tury? Whatever they were, those questions represented the in
itial condition that ultimately shaped a problem area currently 
of dominant importance. 

Our papers rarely report on research-initiating questions in 
detail. Instead, they point to the importance of the problem 
area (generated from the questions) and report on answers. 
The question-asking stage is neglected, and germinal ideas 
recede into the background. 

In a response to these concerns, the 1989 Winter Annual 
Meeting will include a session on "Unanswered Questions in 
Fluid Mechanics." Its Call for Papers is printed below. 
Readers are encouraged to join in this effort to define boun
daries of our knowledge of fluid mechanics by suggesting 
questions that may provoke discussion and fruitful research. 

Joseph A. C. Humphrey Lloyd MacG. Trefethen 

Announcement and Call for Papers for a Session on 

Unanswered Questions in Fluid Mechanics 
ASME Winter Annual Meeting 

San Francisco 
December 10-15, 1989 

The purpose of this session is to bring into sharp focus important unresolved problems in fluid mechanics. 

Because questions are quite different from answers (the usual topic of scientific papers) the organization of this session will 
differ from the usual meeting session: 

Questions should be well posed. 

Each submission will initiate a review among people knowledgeable in the area of the question, in which the initiator 
may be asked to join. 

It is likely that overlapping questions will be merged. 

The final papers selected for this session will be a score or so of well-posed questions, each of which illuminates a seg
ment of the boundary of our current knowledge. 

Each accepted paper will be a page, at most two, describing the question, its background, and something about current 
efforts to obtain answers. 

Questions to be considered should be referred before May 1989, preferably well before, to any one of the following. 

Lloyd M. Trefethen 
Mechanical Engr. Dept. 
Tufts University 
Medford, MA 02155 
617 381-3239 
QBANK@TUFTS. BITNET 
FAX 617 381-3819 

Joseph A. C. Humphrey 
Mechanical Engr. Dept. 
University of California 
Berkeley, CA 94720 
415 642-6460 
FAX 415 642-6163 

Jim Miller 
Dept. of Aeronautics 
Naval Postgraduate School 
Monterey, CA 93943 
408 646-2897 
0267P@NAVPGS 

Ronald L. Panton 
Mechanical Engr. Dept. 
University of Texas 
Austin, TX 78712 
512 471-3129 
FAX 512 471-8727 

George F. Carrier 
Div. of Applied Science 
Harvard University 
Cambridge, MA 02138 
617495-3788 
FAX 617 495-9837 
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Turgut Sarpkaya 
Distinguished Professor of Mechanical 

Engineering, 
Naval Postgraduate School, 

Monterey, CA 93943 

Computational Methods With 
Vortices—The 1988 Freeman 
Scholar Lecture 

A comprehensive review is presented of the computational methods based upon 
Helmholtz's powerful concepts of vortex dynamics, making use of Lagrangian or 
mixed Lagrangian-Eulerian schemes, the Biot-Savart law or the Vortex-in-Cell 
methods. The ingenious approximations and smoothing schemes developed in 
search of predictive models, qualitative solutions, new insights, or just some inspira
tion in the simulation of often two-dimensional, occasionally three-dimensional, 
and almost always incompressible fluids are described in detail. One is forewarned 
at the onset that chaos awaits at the end of the road. The challenge is to produce 
results in the face of ever accumulating errors within a time scale appropriate for the 
investigation. 

The review is organized around two major sections: Theoretical foundations and 
practical applications of vortex methods. The first covers topics such as vorticity 
and laws of transportation, evolution equations for a vortex sheet, real vortices and 
instabilities, Biot-Savart law, smoothing techniques (cutoff schemes, amalgamation 
of vortices, subvortex methods), cloud-in-cell or vortex-in-cell methods, body 
representation (Routh's rule, surface singularity distributions), operator splitting 
and the random walk method (description and convergence), and asymmetry in
troduction. The next section covers contra flowing streams, vortical flows in 
aerodynamics (vortex sheet roll-up; slender-body, two-vortex, multi-discrete 
vortex, and segment or panel methods; three-dimensional flow models, and vortex-
lattice methods), separated flow about cylindrical bodies (circular cylinder, sharp-
edged bodies, arbitrarily-shaped bodies), general three-dimensional flows (vortex 
rings, turbulent spots, temporally and spatially-growing shear layers, and other ap
plications (vortex-blade interactions, combustion phenomena, acoustics, contour 
dynamics, interaction of line vortices, chaos, and turbulence). The review is con
cluded with a brief comparison of these methods with others used in computational 
fluid dynamics and a personal view of their future prospects. 

1 Introduction: User Beware 

Helmholtz (1858) was the first to show, in what is now 
regarded as one of the most important contributions in fluid 
mechanics, that in an inviscid fluid vortex lines remain con
tinually composed of the same fluid elements and flows with 
vorticity can be modeled with vortices of appropriate circula
tion and "infinitely small cross section" — quantum vortex 
lines. It is this realization that led to the discretization of the 
compact regions of vorticity into an assembly of vortices (with 
finite or infinite vorticity) embedded in an otherwise potential 
flow. The Lagrangian or the Lagrangian-Eulerian description 
of the evolution of the discretized vorticity field constitutes the 
essence of the computational methods with vortices. With few 
notable exceptions, applications have been limited to incom
pressible flow cases for which the Biot-Savart law or the 
Green's function method applies. Isolated line vortices, vor-

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division September 28, 1988. 

ticity blobs, vortex balls or vortons, or toroidal vortices are in
troduced into the flow field and tracked numerically by a 
Lagrangian or a mixed Lagrangian-Eulerian scheme. In this 
process, the representation of the body, with the imposed 
boundary conditions, often becomes an integral part of the 
computation of the flow field. When geometrically simple 
solid boundaries are present, suitable image vortices are in
troduced to satisfy the zero normal velocity condition. For 
complex geometries, boundary integral or panel methods are 
used and the free vortex filaments, vortex rings, vortex sheets, 
or blobs are included in the potential flow model. 

In spite of many elegant contributions (assisted by the com
puter of the day), the creation and tracking of mutually in
teracting parcels of vorticity, continue to pose great dif
ficulties, often requiring numerous ad hoc assumptions to pro
duce or reproduce the "best" or the "expected" solution with 
errors which are hard to estimate quantitatively and to 
minimize systematically. The applicability of most models is 
limited to cases that fit the simplifying assumptions. Most of 
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the models behave poorly beyond the parameter range for 
which they were developed, primarily because they violate 
may consistency conditions and moment inequalities. As 
noted by Dritschel (1988), "the nearly inevitable and incessant 
drive of an inviscid fluid to produce finer and finer scales of 
motion prevents any finite algorithm from accurately model
ling even the largest scales of motion for arbitrarily long 
times." 

Various schemes have been devised to reduce the computer 
time and to delay, limit, circumvent, or bound the instabilities 
or chaotic behavior which may result either from the singular 
behavior of the computational elements or from the ill-posed 
nature of the problem solved. Regardless of the particular 
details of the method used, arbitrarily small initial distur
bances give rise to nonsmooth solutions in finite time. Of 
course, one does not know what the errors are (assuming that 
one can define them) in a given situation when there are no ex
act solutions. Depending on one's ultimate goal and the degree 
of sophistication, one may be satisfied with a reasonable-
looking answer to a well-posed problem (in search of inspira
tion), or with only the overall similarity of the computed and 
photographed flow fields (e.g., vortex patterns, flame fronts), 
or with the agreement of the integrated quantities (e.g., lift 
and drag forces), or with the comparison of the instantaneous 
variation of the velocity and pressure fields. 

There has been and perhaps there will always be some skep
ticism about the use of vortices for flow simulation. One can 
find convincing reasons to disappoint the pessimistic as well as 
the optimistic reader. Serious questions are now being raised 
as to whether a continuous region of vorticity (containing no 
vortices) may be discretized into an assembly of discrete vor
tices (with finite or infinite vorticity), whether one can insure 
that the solution of the discretized system actually approx
imates a solution of the continuous system, whether numerical 
instability can be distinguished from transition to turbulence, 
and whether two-dimensional hydrodynamics and 
monochromatic disturbances have a serious role to play in 
three-dimensional nature. However, the alternative methods 
deserve no less skepticism even though some have been around 
a longer time and developed more fully. 

Much has been written about vortex methods since the 
pioneering works of von Karman (1911) and Rosenhead 
(1931). This was just about the time when Richardson (1922) 
attempted to integrate the finite-difference form of the 
meteorological equations (by hand, of course) in order to 
make the first numerical weather forecast. These works had an 
everlasting impact on the future studies. Richardson's failure 
pointed out the need for the development of numerical 
theories. Rosenhead's success revealed the seductive nature of 
the vortex methods and strengthened the belief that the vor
tices are an infinite source of inspiration and frustration. The 
present interest in these methods derives from the hope to 
simulate large scale structures that are complementary to ex
perimental data and to predict flow characteristics which can
not be measured, at least without great difficulty. 

During the course of about sixty years, the number of 
vortex elements increased from two to a hundred thousand 
while the desk calculators and moving fingers were replaced by 
super computers and line printers. Particularly exasperating is 
that almost every paper, at least in part, represents a new 
method. Furthermore, polarization, duplication, and 
"independent" discovery are beginning to set in. The produc
tion of information even in this highly specialized subject has 
exceeded anyone's ability to use it without devoting a large 
fraction of the research time to assimilate it. Review articles 
have become the only practical avenue of approach for 
newcomers to the subject partly to resist the tide of the papers 
generated with the help of parallel processors, partly to 
familiarize them with the ideas and pertinent references, and 

partly to minimize the rediscovery of the existing methods and 
ideas. 

This paper is as much a review of these methods as it is a 
review of the ad-hoc assumptions, ingenious approximations, 
and smoothing techniques conceived and used during the past 
six decades. They could be better appreciated and tolerated if 
one judges them in the spirit best described by the great Ger
man poet and dramatist Johann Wolfgang von Goethe: 
"Man, instead of complaining about the thorns of a rose, 
should be thankful to God for having created a rose among so 
many thorns." 

Many of the results which established our knowledge about 
vortex methods can be found in the reviews by Clements and 
Maull (1975), Fink and Soh (1974), Saffman and Baker 
(1979), Saffman (1981), Leonard (1980, 1985), and Aref 
(1983). These did an excellent job of reviewing either the early 
work in the field or the more recent contributions or some 
more specialized methods and problems. The present review is 
intended to be a comprehensive and even-handed account of 
computational methods with vortices. The objective was 
neither to provide a survey of the Art's instantaneous State 
nor to drive a procession of facts across the reader's attention 
span. Every attempt has been made to generalize the ap
proaches and to explain the basic physical and mathematical 
ideas underlying the major methods and their applications. 
The reader is frequently reminded that the representation of a 
continuous distribution of vorticity by a finite number of 
discrete vortices is the major source of inaccuracy, the growth 
of the cost of computations with the square of the number of 
vortex elements is the greatest disadvantage, and the need to 
devise schemes to cope with the consequences of both is the 
fundamental weakness of the computational methods with 
vortices. 

2 Theoretical Foundations and Numerical Schemes 

2.1 Vorticity and Laws of Transportation. In homo
geneous fluids, vorticity Vxu = co is produced only at the 
boundaries of fluid regions. Vorticity can also be generated in 
the interior of inhomogeneous fluids or at a free surface when 
gravity is acting. In fact, the creation of vorticity by advection 
of the mean gradient is a fundamental process in geophysical 
flows. However, the discussion here will be restricted to 
homogeneous incompressible fluids. 

The vorticity transport equation for a fluid of uniform den
sity p and viscosity v subjected only to irrotational body 
forces, is derived from the momentum equation in the form 

= hu-Vco = co-Vu + fV^co (1) 
Dt dt 

in which use is made of the relations that the divergences of 
the velocity and the vorticity are zero. The term u-Vw 
represents the rate of change due to convection of fluid. The 
term <o» Vu represents the rate of deformation of the vortex 
lines and exists only in a three-dimensional flow. The stretch
ing of the vortex lines concentrates vorticity, increases velocity 
fluctuations and decreases the minimum length scale in the 
flow. The last term represents the rate of change due to 
molecular diffusion of vorticity (with suitable assumptions it 
may be made to represent both molecular and turbulent diffu
sion). The motion of an incompressible fluid can thus be 
represented as the creation and subsequent evolution of a self-
interacting vorticity field. To know the vorticity field as a 
function of space and time is to understand the motion of 
fluids. 

In an inviscid fluid, vorticity is a kinematic property of a 
given fluid particle and, like matter, it can neither be created 
nor destroyed, i.e., vortex lines are material lines. Thus, it can 
undergo only convection and deformation. Consequently, 
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tracking the evolution of vorticity leads immediately to a 
Lagrangian description. 

In a viscous fluid, however, the vorticity produced at a 
boundary is carried away by convection and diffusion. This 
process determines the entire flow field which in turn controls 
the production of vorticity. The discretized representation (ap
proximation) of these processes, particularly in flows where 
the distribution of vorticity is compact, constitutes the essence 
of the computational methods with vortices. 

For two dimensional and unidirectional flows (w,0,0), 
<o • V u = 0 and equation (1) reduces to 

Dai 

~DT 
- = eVza> (2) 

and the vorticity is now a scalar quantity which is attached to 
and transported with the fluid. These equations are analogous 
to the kinematical behavior of magnetic field lines in a 
medium with finite electrical resistivity. 

For a two-dimensional, incompressible and inviscid flow, 
equation (2) may be written in terms of the vorticity co and the 
stream function ^ as, 

Do) dco 
- + u-Vco = 0 (3) Dt dt 

and 

V2¥=-w (4) 

Equation (4) is Poisson's equation and enables one to deter
mine * from co. The stream function *k is related to the veloci
ty components through 

u = d^/dy and v=-d*/dx (5) 

The computational methods with vortices owe their ex
istence to that of the vorticity equation and to the fact that the 
distribution of vorticity in real flows is often sufficiently com
pact for its idealization in terms of singularities imbedded in 
an otherwise inviscid domain. 

The higher the Reynolds number, the more compact the 
regions of vorticity. This is advantageous to dealing with the 
entire flow field through the use of grid-dependent differenc
ing schemes and piecewise smooth interpolation functions [at 
least in theory, before one faces 0(N2) vortex interactions, 
Kelvin-Helmholtz instability (short wavelength instability), 
turbulence, and the need for numerous ad hoc assumptions 
and disposable parameters!] The disappearance of the 
pressure does, in fact, introduce drawbacks into some 
methods (e.g., random walk method) as far as the calculation 
of the pressure distribution on the body is concerned. This is 
partly because the solution of the vorticity equation, with ap
propriate boundary conditions, produces results in terms of a 
nonmeasurable kinematic quantity: vorticity (for indirect 
methods see Agui and Jimenez, 1987; Imaichi and Ohmi, 
1983; and Cantwell and Coles, 1983). Consequently, the 
results of numerical experiments can be compared with those 
of physical experiments only indirectly. Some numerical 
schemes (to be discussed in detail later) calculate the pressure 
distribution and the time-dependent integrated quantities 
(e.g., lift and drag forces) indirectly and approximately as 
quantities averaged over a sufficiently large number of time 
steps. 

Lucid interpretations of vorticity and the equation govern
ing its transport are given by Lighthill (1963), Batchelor 
(1967), and Morton (1984). Here we will describe only briefly 
some of the most important conclusions. 

The generation of vorticity at rigid boundaries and its subse
quent decay have been the subject of much discussion. 
Lighthill (1963) invoked the existence of vorticity sources in a 
region of falling pressure along the boundary and vorticity 
sinks (at which vorticity is abstracted at the surface) in a 

following region of rising pressure. This is based on the fact 
that the tangential-vorticity source strength is related to the 
pressure gradient, at least for flow over a stationary plane sur
face 0 = 0), by 

dwz d / dv du \ d2u 1 dp 

dy dy \ dy V dx dy 
. ) - . 

dy2 dx 
(6) 

Batchelor (1967) also noted that "vorticity cannot be created 
or destroyed in the interior of a homogeneous fluid under nor
mal conditions, and is produced only at the boundaries," im
plying that the mechanism whereby vorticity is lost is by diffu
sion to the boundaries. Morton (1984), has finally clarified all 
prior concepts regarding the generation and decay of vorticity. 
His conclusions will be summarized here since the under
standing of where and how the vorticity is lost is of central im
portance in the numerical schemes to be discussed later. Ac
cording to Morton, "vorticity generation results from tangen
tial acceleration of a boundary, from tangential initiation of 
boundary motion and from tangential pressure gradients ac
ting along the boundary," "vorticity once generated cannot 
subsequently be lost by diffusion to boundaries," "reversal of 
the sense of acceleration or of the sense of pressure gradient 
results in reversal of the sense of vorticity generated'' (which is 
interpreted by Lighthill as a vorticity sink), "walls play no 
direct role in the decay or loss of vorticity," and "vorticity 
decay results from cross-diffusion of two fluxes of opposite 
sense and takes place in the fluid interior." 

The solution of real fluid flow problems with vortex models 
often forces one to think (at times to defend) simultaneously 
the behavior of vortices in terms of viscous and inviscid con
cepts. Thus, it is necessary to summarize briefly some of the 
major differences between the characteristics of vortices in 
viscous and inviscid fluids. In an inviscid incompressible fluid 
of uniform density, subjected to irrotational body forces, the 
circulation around any closed material curve is invariant 
(Kelvin's circulation theorem). This is a consequence of the 
fact that there is no diffusion and vorticity is transported sole
ly by the convection of the fluid. In a viscous fluid, however, 
the circulation about a closed contour moving with the fluid 
depends on the contour of integration. The rate of change of 
vorticity in a material volume is due solely to diffusion across 
the boundary of the volume. The appreciation of this dif
ference is of importance in the determination of the vorticity 
generated by a body, vorticity found in the wake, and the 
estimation of the circulation of a vortex. Sample calculations 
of the vorticity diffusion in the wake of a cylinder are given by 
Eaton (1987). 

2.2 Evolution Equations for a Vortex Sheet. The con
jugate complex velocity q(z) induced by a two-dimensional 
vortex sheet of strength y(s, t) = dT/ds situated on the contour 
C is given by the Rott-Birkhoff nonlinear integro-differential 
equation (Rott, 1956; Birkhoff, 1962) 

q(z) = u-iv = 
y(s',t)ds' 

2/VJc z — z(s',t) li-w J 
+ U,-iV„ (la) 

where Ue and Ve are the components of an external irrota
tional velocity field evaluated at z. The Cauchy principal value 
is assumed for the integral to calculate the velocity at points on 
the sheet. Equation (7a) has been generalized to the case of a 
vortex sheet with small thickness by Moore (1978). If the cir
culation T is chosen as the Lagrangian variable to identify 
points on the sheet, equation (7a) may be written as (Birkhoff, 
1962), 

dz 1 f 
dt 2/7T JC 

dY' 
-+U„-iVe 

)c z(T,t)-z(T',t) • ~* - ' m 

Equations (la) and (lb) ensure the continuity of pressure 
across the sheet and the conservation of circulation of 
segments lying between any two points moving with the sheet. 
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However, they do not ensure consistent and analytically trac
table solutions; one must resort to numerical methods. 

The standard and perhaps the crudest procedure is to iden
tify the position of the sheet using a finite number of marker 
points. Then the motion of the sheet is approximated by 
calculating the trajectories of the marker points. For example, 
of the trailing-vortex sheet of a wing is represented by an array 
of n line vortices per half wing, equation (7a) reduces an initial 
value problem, consisting of a set of 2n, first order, ordinary 
differential equations whose solution requires suitable 
smoothing schemes. The next level of approximation is to 
replace the sheet by a large number of segments or panels 
through the use of piecewise polynomial representations for 
both 7 and s and to simulate the highly rolled-up inner region 
either by an isolated line vortex or by a finite region of 
distributed vorticity. These and other methods such as the 
vortex-lattice and panel methods are discussed in Section 
3.2.2. 

2.3 Real Vortices and Instabilities. Real vortices are not 
concentrated singularities of infinite vorticity. The best known 
among these are the Rankine and Lamb (Oseen) models. The 
Rankine vortex rotates as a solid body within its core and is 
characterized by a potential flow outside, i.e., all of the vor
ticity is confined to the core region. The tangential velocity 
distribution for an isolated Rankine vortex has the form 

r T r 
ve=-z— (r>rc) and ve=- r (r<rc) (8) 

2irr 27r r% 

with an artificial discontinuity ar r = rc. 
The Lamb (1932) model involves a Gaussian vorticity 

distribution and a circumferential velocity given by 

u(r,t) = (T0/4irvt) exp( - r2/4vt) (9a) 

and 

v(r,t) = (r0/27rr) [ 1 - exp( - r2/4vt] (9b) 

Equation (9) is an exact solution of the Navier-Stokes equa
tions for a single viscous vortex in an unbounded incompressi
ble domain and \/2vt = r0 is the standard deviation of the vor
ticity distribution. The radius at which the tangential velocity 
reaches a maximum is rm =2.24Vw"= 1.584r0. 

Obviously, even a single vortex with a compact support 
(e.g., Rankine vortex) is not an exact solution of the Navier-
Stokes equations. A single Lamb vortex (which has an infinite 
support in an unbounded domain) is an exact solution. 
However, the velocity field of a multi-Lamb-vortex system is 
not strictly an exact solution because the nonlinearity of the 
Navier-Stokes equations does not permit the superposition of 
the vortex fields. 

Rayleigh (1916) analyzed the stability of single vortices with 
general distributions of circulation, swirl velocity, and vortici
ty, but only for axisymmetric perturbations. He showed that 
stability against such perturbations is assured if T2 nowhere 
decreases with r, i.e., 

d(T2)/dr = 8Tr2r2uVe>0 (10) 

Otherwise the vortex is unstable to axisymmetric perturba
tions. A vortex with a T2 that decreases somewhere is said to 
have a circulation overshoot (Govindaraju and Saffman, 
1971). This phenomenon has not yet been observed ex
perimentally, probably due to the fact that it is difficult to 
make measurements where it occurs. Clearly, a vortex is 
unstable if it has vorticity whose sign is opposite the swirl 
velocity. This, however, is not the only mechanism whereby a 
single laminar or turbulent vortex is dissipated. Vortex 
bursting or vortex breakdown has been shown experimentally 
to play a more dominant role in the demise of a vortex (see, 
e.g., Sarpkaya 1971, 1983). Axial flow (Bergman 1969; Wid-

nall and Bliss 1971; Moore and Saffman 1972) and ambient 
turbulence (Sarpkaya and Daly 1987) are known to affect the 
stability of a vortex pair and the occurrence of vortex 
bursting. 

The stability of vortex sheets and, in particular, the 
Helmholtz instability have been the subject of intense interest. 
It is a well-known fact that an infinitesimal disturbance of 
wavelength X on a plane sheet of strength K grows like 
exp(irKt/\), according to which the shorter waves grow faster. 
The stability of unsteady two-dimensional vortex sheets was 
discussed by Saffman (1974), Moore and Griffith-Jones 
(1974), and Moore (1976, 1981, 1984). Saffman and Baker 
(1979) suggested that the spiralling vortex sheets may be stable 
to Helmholtz instability because their strength decreases at a 
rate faster than that necessary to stabilize the sheets against a 
local Helmholtz instability. However, experiments show that 
the roll-up of both two-dimensional as well conical vortex 
sheets is accompanied by Helmholtz instability (Pierce, 1961; 
Tomassian, 1979; Gad-el-Hak and Blackwelder, 1985, 1987; 
Payne et al., 1967; Sarpkaya et al., 1988). 

Trailing vortices are made of rolled-up vortex sheets. Dur
ing their formation process, the tightly spiralled regions ex
hibit velocity jumps between the vortex sheets. They are then 
liable to helical instabilities, even to Helmholtz-type instabili
ty. The Helmholtz waves on the vortex sheet quickly 
degenerate into turbulence, which mixes the sheets and 
smoothens the vortex cores. The turbulence so generated en
croaches upon the external potential flow, spinning it up at 
the expense of angular momentum in the core. There results a 
circulation overshoot and corresponding countersign vorticity 
in the region of circulation overshoot. The ensuing Rayleigh 
instability produces strong turbulence and further encroach
ment into the potential flow. The mathematical model used to 
date of concentrating vorticity onto a tightly wound spiral sur
face has, of course, no strict counterpart in real flows, 
although measurements of the velocity field in such cores have 
shown up to one to two of the outer turns of the spiral. Fur
ther inwards, viscous diffusion smears out any trace of such 
discontinuities and an approximately axisymmetric swirling 
flow with distributed vorticity appears. This, in fact, is the 
basis of the scheme of amalgamating the inner spirals into a 
finite core region to avoid sheet kinking and spurious interac
tion between spirals at or near the end of the sheet. The seren
dipitous consequence of this scheme is to delay the discrete 
form of the Helmholtz instability in the remainder of the 
sheet. 

The three-dimensional instability of an initially parallel 
vortex pair has attracted great attention because of its impor
tance in the understanding of the demise mechanisms of air
craft trailing vortices. Crow (1970) was the first to show that 
both symmetric and asymmetric modes of instability will 
develop on the vortices due to the mutual inductance of the 
sinusoidally perturbed pair. Crow has also shown that the in
stability grows exponentially and results either in a linking of 
the vortex pair into a series of crude vortex rings or in a highly 
disorganized intermingling of the vortices. Once again, vortex 
bursting may occur on one or both of the vortices. It is now 
agreed that sinusoidal instability, vortex breakdown, axial 
velocity in the vortices, ambient turbulence, and the stratifica
tion of the medium govern the demise of the trailing vortices 
and the evolution of internal waves in a stratified medium 
(Widnall et al., 1971; Moore, 1972; Moore and Saffman, 
1972; Widnall, 1975; Sarpkaya, 1983; Sarpkaya and Daly, 
1987). 

Another form of three-dimensional instability concerns the 
vortices shed from bluff bodies. Even if the body is two-
dimensional and even if the vortices are shed in a two-
dimensional manner, three-dimensional vortex instabilities 
may distort the filament and affect the spanwise and chord-
wise correlation of pressure on the body. This raises questions 
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regarding the applicability of the two-dimensional models, the 
possible means with which the two-dimensional calculations 
may be corrected to adequately account for the three-
dimensional distortions of the vortex filaments (artificial 
reduction of circulation), and the repesentation of a three-
dimensional vorticty field (containing curved vortex filaments 
with core and finite self-induction) by two dimensional vor
tices (with or without a core and no self induction). Thus, one 
needs to know the source of the three-dimensionality in order 
to devise models either to replace the two-dimensional calcula
tions or to correct them. Furthermore, one has to make sure 
that the mechanism of instability is the same for both the con
tinuous and the discrete systems and that both lead to the same 
type of large and small scale structures. 

In order to address some of these questions, Widnall 
(1985a, 1985b) analyzed the three-dimensional instability of 
two highly idealized cases: A single vortex separating from a 
cylinder as well as that of the Foppl vortices (two symmetrical 
stationary vortices behind a circular cylinder, see, e.g., Milne-
Thomson, 1960 and Weihs and Boasson, 1979). Her calcula
tions have shown that the most unstable mode of instability 
for the single vortex separating from a circular cylinder is 
three-dimensional. She reached similar conclusions for 
various modes (symmetric and asymmetric) for the Foppl vor
tices. This investigation as well as those of Crow (1970) and 
Widnall and Sullivan (1972) suggests that the neglect of three-
dimensionality can lead to disagreements with experimental 
results. This is in addition to two-dimensional instabilities 
resulting from the discretization of a field of continuous vor-
ticity which may not be representative of the behavior of the 
continuous system. 

The instability of vortex rings has attracted much 
theoretical and experimental interest following the pioneering 
work of Krutzsch (1939). A detailed review of the subject is 
presented by Widnall (1975) (see also Saffman, 1970, and 1978 
for a succinct critique of earlier stability calculations). The 
mutual interaction of vortex rings generated, for example, by 
a bluff body or by a round jet is of importance in the 
numerical simulation of three-dimensional flows. There is a 
strong interest in the understanding of the details of the vortex 
linking and the emergence of new vortex rings (i.e., the cross-
linking or the cut-and-connect mechanism) and in the 
establishment of a possible relationship between these 
phenomena, noise and turbulence. According to Hussain 
(1986) "The cut-and-connect provides an alternative 
mechanism for energy cascade and a mechanism for genera
tion of helicity (and thus perhaps coherent structures)." The 
vortex reconnection is prohibited in inviscid flows by 
Helmholtz's theorem. Thus, viscous effects are necessary for 
its occurrence (see also Ashurst and Meiron 1987). A direct 
numerical simulation of the phenomenon, starting with a 
closed knotted vortex tube, is given by Kida and Takaoka 
(1987) through the use of the full Navier-Stokes equations. 

2.4 Biot-Savart Law (The Direct Summation Method). 
The velocity induced by the vorticity concentrated in a bound
ed region is given by the volume integral (see, e.g., Batchelor 
1967) 

reduces to 

™~iJJJ 
1 (r-r')xbi(r' ,f) 

Ir-
dv(r') (11) 

which was found experimentally by Biot and Savart in 1820 in 
connection with the determination of the magnetic field inten
sity (corresponding to u) induced by an element of electric cur
rent (corresponding to o) and was established analytically by 
Ampere in 1826. 

If vorticity is concentrated at a single curved filament of cir
culation T {the thin filament approximation), equation (11) 

u(r,0 = 

[r(s)-r'(,y')]*-—-
r f ds' 

4TTJC IrCO-r 'Cs') !3 
ds' (12) 

in which r(s) describes the filament centerline in terms of the 
arclength s, and dr/ds'. ds' is the filament tangent vector. 
Equation (12) yields a logarithmically infinite self-induced 
velocity (Batchelor 1967) if the filament is curved, and zero 
self-induced velocity if it is straight, i.e., a line vortex (a 
straight vortex filament of non-zero circulation, vanishing 
cross-section, and infinite vorticity). There is no two-
dimensional point vortex. The thin filament approximation is 
further simplified, to deal with the logarithmic singularity, 
through the use of the Local (or Self) Induction Approxima
tion, LIA, (the local approximation that the core radius is very 
small and the dominant term in the motion is proportional to 
the local curvature and directed along the binormal), introduc
ed by Da Rios (1906), Hama (1962, 1963), and Arms and 
Hama (1965), modified by Betchov (1965), and used, e.g., by 
Schwarz (1982) are Aref and Flinchem (1984). As noted by 
Buttke (1988), LIA does not allow for stretching or compres
sion of a vortex filament. Only the (neglected) nonlocal terms 
allow one the desired three-dimensional realism. 

There are two additional difficulties with the Biot Savart ap
proach even for two-dimensional flow simulations with line 
vortices. First, the vortex filaments are singularities and, 
hence, create large velocities and/or critical velocity dif
ferences in their neighborhood. This causes instabilities and 
physically impossible sheet crossings along and near the edges 
of the sheet. This, in fact has been the case with most of the 
earlier works. Clearly, the propensity for mutual orbiting of 
the vortices and the meandering of the edge of the vortex sheet 
in an otherwise inviscid environment are at the heart of the 
problem. 

The second difficulty with the Biot Savart method concerns 
the CPU per time step. The number of operations required for 
the velocity-field calculation is proportional to N2 where N is 
the number of vortices. Thus, the CPU time increases 
significantly as more vortices are added. These two difficulties 
gave rise to numerous smoothing schemes and hybrid methods 
to be discussed in the following sections. 

2.5 Smoothing Techniques. As noted earlier, the Rott-
Birkhoff equation does not ensure consistent solutions. Van 
der Vooren (1980, in report form in 1965) showed that the 
principal-value integral in equation (7) could be evaluated ac
curately through the regularization of the integrand with a 
cancellation function. Unfortunately, this did not appear to be 
the sole cause of the difficulty, as his calculations led to 
chaotic behavior. 

Moore (1979, 1981, 1984) has shown that the discretization 
of the principal value integral in equation (7) is not the cause 
of the pathological instability and that the ill-posedness is in
troduced by the very step of replacing a thin shear layer by a 
vortex sheet. For the discretized vortex sheet, Moore identified 
the difficulties as a discrete form of the well-known Helmholtz 
instability and showed that the most unstable mode has a 
period equal to twice the spacing of the vortices. He has also 
shown that the fastest growth rates are for the smallest 
wavelengths (as with the continuous Helmholtz instability) 
and that increasing the number of vortices increases the 
growth rate of the disturbance. Meiron, et al. (1982), using a 
more general spectral method and initial disturbances of finite 
amplitude were able to identify singularities in the sheet cur
vature and to confirm Moore's (1979) asymptotic prediction 
of the critical time at which the singularities appeared. 

When chaos pervades, suggestions for smoothing reign 
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supreme. The challenge to obtain a smooth roll-up through 
line-vortex discretization of a thin shear layer proved to be 
seductive and the rush was on to discover smoothing schemes 
or surgical techniques with the implicit assumption that they 
have a negligible effect on the dynamics of large-scale struc
tures: Velocity cutoff or use of vortices with a core or compact 
support, amalgamation of a number of vortices into a single • 
vortex, use of subvortices, rediscretization of the sheet, and 
other filtering and smoothing techniques. 

2.5.1 Cutoff Schemes. Numerous cutoff schemes have 
been introduced to desingularize equation (7) (Rosenhead, 
1930; Spreiter and Sacks, 1951; Hama, 1962, 1963; Arms and 
Hama, 1965; Crow, 1970; Widnall et al., 1971; Moore, 1972; 
Moore and Saffman, 1972; Kuwahara and Takami, 1973; 
Chorin and Bernard, 1973; de Bernardinis and Moore, 1985; 
Clements and Maull, 1973, 1975). 

The first is Rosenhead's (1930) method, as modified by 
Moore (1972), according to which the evolution equation for 
the one-dimensional continua of space curves /•,(£)(/= 1, 
2 N) for N filaments is given by (see, e.g., Leonard 
1985) 

„ [r,($,0-ry($V)]*-§r- dk' 

- E - S - i - <»•> dt (lr,- - Tj 12 + cwr2)3 

in which a is the core radius (specified by a vorticity distribu
tion) and a is a parameter related to the fraction of circulation 
within the radius r = a (Moore 1972) [a = 0.413 for a Gaussian 
core (Leonard 1980a) and a = 0.22 for a uniform vorticity 
distribution (Ashurst and Meiron 1987)]. The assumed core 
radius is not expected to remain constant during the evolution 
of the toroidal vortex. It may depend on time and on the axial 
velocity within the filament (Widnall et al., 1971; Moore and 
Saffman, 1972; Leonard, 1985). The interaction of filaments 
with different core radii may be expressed by modifying equa
tion (13a) as, 

dt T 4TT J 

['/tt,O-r,tt',0]*-Sf«/r 
ok 

( l r , - r , l 2 + a(a? + ff?)3/2 
(13ft) 

where a = 0.2065 yields the correct speed of a ring vortex in the 
limit <7,<SCring radius (Leonard 1980b). A lucid discussion of 
the asymptotic analysis leading to equation (13ft) is given by 
Moore and Saffman (1972). The above cutoff scheme 
modifies the denominator of the term under the integral sign 
in equation (12) and mimics the thickening of the vortex sheet 
by viscosity. A similar scheme has been used by Meng (1978) 
in connection with the evolution of a vortex ring in a stratified 
and shearing environment. He replaced /•?• in the denominator 
of equation (12) by (/•?• + r3

c) for the three-dimensional case and 
r}j by r}j + r\ for the two-dimensional case. 

For an assembly of closed filaments, the energy 

swirling component of velocity is not accurately accounted for 
(see, e.g., Siggia, 1985 and Pumir and Siggia, 1987). 

In the second and more commonly used cutoff scheme, pro
posed, apparently independently, by Spreiter and Sacks 
(1951), Roy (1957), Kuwahara and Takami (1973), and Chorin 
and Bernard (1973), the line vortex is replaced by a "blob": a 
vortex with an invariable core shape and size or "compact 
support." Spreiter and Sacks used a Rankine vortex. 
Kuwahara and Takami used the Lamb vortex on the grounds 
that it describes exactly the velocity field of a single viscous 
vortex. They have noted that the velocity field of a multi-
Lamb-vortex system "is not strictly exact because they are in
compatible with the Navier-Stokes equation, whose 
nonlinearity does not permit the superposition of the vortex 
fields." In fact, it is because of this realization that they called 
v in equation (9ft) "artificial viscosity." Kuwahara and 
Takami studied the rotation of vortex tubes of elliptic and cir
cular section, comprised of numerous line vortices (with i> = 0) 
and obtained angular velocities comparable with those given 
by the exact solution. They have also studied the roll-up pro
blem and have shown that the inclusion of "artificial viscosi
ty" smoothens the roll-up but the degree of roll-up decreases 
with increasing v. Furthermore, the artificial viscosity does not 
prevent the eventual occurrence of strong irregularity in the 
region of high vortex concentration (see, e.g., Dalton and 
Wang, 1988). 

Kuwahara and Takami's blob had a time-dependent core 
radius, and that of Chorin and Bernard a fixed radius (the first 
to be widely noted). Even though core expansion appears to 
simulate the viscous diffusion of the vortex, Greengard (1985) 
argued, without giving any error limits, that the core 
spreading scheme does not converge to the correct equation of 
motion except when the flow field outside the region Ico I > 0 is 
uniform. The rigid-blob idealization is not dynamically con
sistent either and violates Euler's equations and Helmholtz's 
laws! Nevertheless, both schemes have been used extensively 
(see, e.g., Ghoniem et al., 1987b). 

In addition to its strength, position, axial symmetry, and 
nondeformability, a blob is specified by its cutoff radius and 
cutoff function (describing the shape of the core velocity 
distribution, e.g., a Rankine or Lamb vortex). The scalar vor
ticity field at time «• Ar is represented by 

«>"(•*)= I X W-*)ri (15) 

where x" is the position of the /th blob, T,- its strength, and Ka 

the cutoff function, with a cutoff radius a [see Chang (1988) 
for a fairly complete list of the commonly used cutoff func
tions]. The Chorin and Bernard blob had a stream function \F 
such that 

* = 
"(2Tr)-Tlogr (r>a) 

J27r)-T(r /a) (r<o) 

The corresponding cutoff function is given by 

(16a) 

dr, dr 

•fEr,r,J- ae, Kj 
Hi&j 

+ a(a2 + ff]j 

(14) 

is conserved and positive definite only when a, is independent 
of time. It approximates the volume integral of the kinetic 
energy when the cores do not overlap. If a is adjusted locally 
to conserve volume, the core size becomes £ and time de
pendent and the energy is no longer conserved. This is not sur- , 
prising since axial flows are neglected and the energy in the 

Ka(x) = 
(2iro\x\)~l \x\<a 

0 bd><7 
(16ft) 

For /•< <j, the velocity induced by such a vortex is that of rigid
ly rotating fluid core and for r>a, it is identical to that of a 
line vortex. 

The velocity field created by vortices with small but finite 
area is finite everywhere and quantitatively correct away from 
the core. Near the core, the velocity is only qualitatively cor
rect since the vorticity distribution about each blob is not 
allowed to distort in the prevailing strain field. This imposes a 

10/Vol. 111, MARCH 1989 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.94. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



lower limit on the wavelength of the disturbances which can be 
used in stability calculations. This is in addition to the fact 
that a linear sum of vortices with finite cores does not con
stitute an exact solution of the nonlinear equations of motion. 
If the vortices are well separated, the use of blobs is not 
necessary. If two or more blobs are allowed to overlap, 
Helmholtz's law (vortex lines are material lines) and the law of 
conservation of total energy are violated. The amount of 
energy lost depends on the core size chosen. The larger the 
core size the greater the loss of energy. For a given core size, 
the energy remains nearly constant but lower than the strictly 
inviscid value. The limitations of the approach regarding the 
rapid distortion of the finite regions of vorticity have been 
brought out by the analyses of Dushane (1973) and Portnoy 
(1976, 1977). 

The use of blobs (i) does not ensure smooth roll-up but, as 
pointed out by Moore (1984), provides damping of short 
waves; (ii) must be regarded as a mathematical artifice to limit 
the large velocities induced by vortices in their immediate 
neighborhood; and (iii) requires a judicious selection of the 
shape of the velocity distribution and the core size relative to 
the inter-vortex spacings (the degree of overlapping of the 
blobs). Note that the velocity and vorticity at a point in a 
region occupied by overlapping blobs are determined by the 
contributions of surrounding "layers" of blobs and not just 
by the core function of one blob. 

In general the blob scheme modifies the numerator of the 
integral in equation (12) by introducing a smoothing function 
g(c) which depends on the assumed structure of the vortex core 
(Leonard et al. 1985). Equation (12) then is written as 

dt, 

j 4T J 

Equation (17) may be made to satisfy the conservation of 
total kinetic energy by using the vorticity-weighted average of 
the velocity over the blob (Leonard's schemes B and D). Such 
refinements are not deemed commensurate with all the other 
approximations inherent to the analysis. However, the overlap 
of the filament cores provides a smoother distribution of the 
vorticity and, as shown by Ashurst and Meiburg (1988), is 
necessary for convergence to Euler equations (see also 
Meiburg and Lasheras, 1988). However, vortex filaments may 
be quickly depleted by large strains, making their overlap im
possible without special treatments which, in turn, distort the 
velocity field. 

The geometry of each space curve is approximated by a se
quence of linear segments between successive nodes. In an im
proved version of this method, Leonard et al. (1985) used a 
trapezoidal rule to integrate along each curve with parametric 
cubic splines to estimate the derivatives dr/d£ at each node. He 
claimed that the new method requires only half the number of 
arithmetic operations per node point and only half the number 
of node points for equivalent accuracy. Ashurst and Meiburg 
(1988) used continuous filaments described by cubic splines 
with second-order integration in space and time in simulating 
the evolution of three-dimensional shear layers. 

An alternative to the continuous-vortex-filaments represen
tation of vorticity in three-dimensional flow is the use of 
vortex balls (vortons according to Saffman and Meiron 1986, 
or vortex arrows according to Leonard 1975) and the volume 
integral given by equation (11). The vorticity field is discretiz-
ed into a number of vortex balls, each with an assigned vortici
ty. Each ball is characterized by a core radius, a core function, 
a circulation, and a material vector element that describes the 
distribution of vorticity along the axis of the element. The core 
radius and the core function remain invariant with time. Cir
culation of an element is constant but the vorticity changes 
with stretch of the material element. The accurate representa
tion of the continuous vorticity field and the local vorticity in
tensification requires that the core functions associated with 
neighboring elements must highly overlap and the elements ex
periencing severe stretch must be split into two in the local 
direction of the vorticity, i.e., sub-vortons must be created as 
in Maskew's (1977) sub-vortex model (note that the velocity 
field in the vicinity of the sub-vortons is not identical to that of 
the original vorton field). The use of vortex balls allows 
substantial deformation of the core of a toroidal vortex at dif
ferent radial stations (see e.g., Ghoniem et al., 1987a, Knio 
and Ghoniem, 1988, Shirayama et al., 1985, and Section 3.4). 

For the two-dimensional case, a simple modification is 
needed to equations (12) and (17). For example, equation (12) 
reduces to 

or as 

W,-^=4~E^7 (22b) 

The effect of an assumed core (e.g., a Rankine vortex), can 
easily be incorporated into the above equations by rewriting 
equation (22a) as 

uk + ivk = ik = — Y, TJJLJTL <23fl) 
Z7T r ,-j. 

(17) 

where g(c) is arbitrary within certain constraints. Leonard et 
al. (1985) used 

g(c) = c3/(c2 + a)3 (18) 

where a = 0.413 corresponds to a Gaussian core and a = 0.22 
to a uniform vorticity distribution in the ring core, as noted 
earlier. 

Equation (17) yields the velocity field evaluated at the center 
of the vortex. It satisfies the conditions of conservation of 
total circulation and linear and angular impulse either if a, = a 
or if g(c) is slightly modified so that 

dxk 

dt 
1 V1 (xk-*j)xezTj 

2* £ \xk-xj\2 

j*k 

(20) 

and equation (17) becomes 

dt 
(xk-Xj)xezTjg(\xk-Xj l/o,-) 

2TT J = I - x - I2 (21) 

where xk(xk,yk). 
In terms of complex variables, equation (20) may be written 

as 

_3r, 
dt ™ 4ir J 

[ r , t t ,0-r ; t t ' ,0]* - | f * [ | r , - r / |/[(<r? + a?)/2] " ] 
•dV 

(19) 
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for TJk = \zj—Zii\>o and as 

"* + ivk = -TT-T E TMk ~ Zj) 
A = 1.443 

lira2 (23b) 

for rjk<a, (counterclockwise T is considered positive). The 
velocity induced at zk by the underlying irrotational flow (e.g., 
uniform flow, doublet, etc.) will have to be added to that inT 

duced by the vortices. 
One may desingularize equation (22«) or equation (23a), for 

example, by replacing rjj by rjj + r2., where rc is a measure of 
the core radius (Meng (1978). For rjk«.rc, and therefore in 
the core, the velocity grows linearly with respect to the radial 
distance but falls off as \/rJk if rJkii>rc. This is the method 
originally proposed by Rosenhead (1930), as noted earlier in 
connection with equation (13). 

Krasny (1987), in computing the roll-up of a vortex sheet in 
the Trefftz plane, desingularized equation (22b) by multiply
ing the right-hand side with what he called "an artificial 
smoothing parameter" to obtain 

"* Wk Zk 2nr Y Zk-Zj \zk-Zj \2 + o2 

\zk—Zj\ 
(24) 

Equation (24) is identical to Meng's (1978) modification of 
equation (22b) to include a core radius as 

uk-ivk=zk=— XJ Zk—Zj 

r% + n 
(25) 

which, in turn, is the two-dimensional version of the de-
singularization scheme proposed by Rosenhead (1930). Equa
tion (25) has been rediscovered by Inoue (1985a) also in con
nection with his vortex simulation of a turbulent mixing layer. 

The use of an Oseen or Lamb vortex [equation (9b)] to 
simulate an expanding vortex core is not identical to the use of 
Rosenhead's smoothing scheme. The two methods yield nearly 
the same tangential velocity distributions as a function of r/b 
for 1 . 4 4 < 4 J ^ / ( 5 2 < 1 . 6 3 (see Fig. 1). The viscous-diffusion 
solution of Lamb for an isolated line vortex corresponds to an 
ever increasing 5 in equation (24) for 4vt/&2> 1.63. It is 
because of this reason that Rosenhead's scheme (8 = constant) 
leads to the roll-up of tighter spirals, relative to other schemes 
using either the Lamb model (see, e.g., Dalton and Wang 
1988) or the Fink and Soh (1978) model, (rediscretization with 
a growing central line vortex). The asymptotic form of the 
spiral and the growth rate of the Kelvin-Helmholtz instability 
depend on the initial amplitude and type of disturbance and 5 
(Pozrikidis and Higdon 1985, Krasny 1987). Krasny's (1987) 
roll-up calculations suggest that the large-scale dynamics 
become independent of 6 as 5—0. Clearly, Rosenhead's (1930) 
desingularization scheme is akin to, but not identical to, the 
use of a blob, even though in the most recent literature they 
are both being called the blob-method. 

Other ad hoc cutoff schemes exist and undoubtedly new 
ones will be introduced. For example, Clements and Maull 
(1973) used equistrength discrete vortices to investigate the ef
fect of different wing loading distributions on the roll-up. In 
order to deal with the very large velocities induced on the final 
vortex in the sheet, they have placed an upper bound on the in
itial velocity of the vortices near the tip and amalgamated 
those responsible (never more than two) whose mutually-
induced velocity exceeded the imposed bound. 

2.5.2 Amalgamation of Vortices. Two or more vortices 
have been amalgamated into a central line vortex in numerous 
ways and for a number of reasons: to limit the unrealistically 
large velocities induced in each other, to minimize their pro
pensity to orbit about each other, to simulate more closely 
some naturally occurring merging, and to reduce the computer 

,.A = 1.63 

V* = XI (1 + A.2) (Rosenhead) 

(Lamb) 
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Fig. 1 Comparison of the Lamb and Rosenhead (1930) velocity profiles 

time. Apparently, Ham (1968) (who credited S. Widnall for 
the suggestion) was the first to use this scheme. 

Amalgamation is an approximation and there is no "cor
rect" or "guaranteed" way to perform it. One should use it 
with care and, if possible, verify that it did not introduce unac-
ceptably large errors. Unfortunately, it is often difficult to 
assess the more elusive effects of merging on the numerical 
predictions since the problem is highly nonlinear and since its 
consequences are intermingled with those of many other 
parameters and ad hoc assumptions. 

It has been customary to amalgamate two or more vortices 
into a single vortex of strength Ty, placed at their center of 
vorticity, given by 

z = T.TjZj/ZTj (26) 

This process conserves only total circulation and linear 
momentum. With merging of likesign vortices, (r,T,->0), the 
second moment of vorticity distribution decreases and the 
velocity fields before and after the amalgamation are not iden
tical. Consequently, discontinuities occur in the calculated 
force acting on a body if either the generalized Blasius 
theorem or the time-rate of change of impulse is used. Thus, it 
is not advisable to merge vortices close to a boundary. In 
unidirectional flow past bluff bodies, the vortex clusters 
beyond a given distance from the body have been merged into 
a single equivalent vortex, primarily to reduce the CPU time 
(note that the velocity field in the vicinity of the merged vortex 
is not identical to that prior to merging). For oscillating flows, 
the merging is not advisable even if it takes place away from 
the body at the time of its execution. The merged vortex may 
subsequently be convected back across the body and give rise 
to velocities and pressures vastly different from those which 
would have been created by the original cluster (the wake 
return is an important phenomenon in periodic flow about 
bluff bodies) (see, e.g., Sarpkaya 1986a, 1986b). 

The oppositely signed vortices are often combined, when 
their separation distance is less than a prescribed value, to 
mimic the cancellation of oppositely signed vorticity (thought 
to be the major mechanism of enhanced energy dissipation in 
turbulent flow). The removal of a vortex from the field, when 
it is closer than a prescribed distance to a boundary, (or to its 
image), is based on the same idea. 

Merging of vortices into a single vortex to represent the in
nermost part of a rolled-up shear layer is based on the realiza
tion that a spiral with infinite number of turns cannot be 
represented by a finite number of vortices (J.H.B. Smith, 
1968; Moore, 1974). Such a merging helps (i) to avoid the ef
fects of the erratic motion of the tip vortices (sheet crossing, 
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hooks, kinks, etc.) stemming from the sparsity of the vortices 
in the tip region or from the inadequate (or inappropriate) 
representation of the compressive parts of the sheet, (ii) to 
smoothen the rest of the sheet by eliminating the attendant 
consequences of propagation of the tip perturbations along 
the feeding sheet, and more importantly, (iii) to recognize the 
natural fact that the viscous diffusion smears out the velocity 
discontinuities, leading to an approximately axisymmetric 
swirling flow with distributed vorticity, as discussed in Section 
2.3. Furthermore, this merging technique in consort with 
other techniques (e.g., rediscretization) allows the calculation 
to be taken beyond time limits of the basic discrete vortex 
calculations (Moore, 1981). 

The merging technique has been used extensively in a variety 
of applications. For example, it has been used by Fink and 
Soh (1974) to deal with the singular behavior at the tips of the 
sheet; by Rom and Almosnino (1978) to calculate the 
nonlinear lift on canard configurations where merging 
resulted in twice as much lift relative to that without merging 
by Deffenbaugh and Marshall (1976) to simulate the flow 
about a cylinder where merging affected the transverse force 
in the early stages of the flow development (showing that 
amalgamation on the one side and in the vicinity of the 
cylinder causes large changes in the pressure distribution in the 
neighborhood of the merged vortex, as expected); by Sar-
pkaya and Shoaff (1979b) to calculate the evolution of flow 
about stationary and transversely oscillating circular 
cylinders; by Longuet-Higgins (1981) in connection with his 
model of oscillating flow over steep sand ripples; by Bromilow 
and Clements (1982) to simulate the roll-up of vortex sheets 
where clusters of vortices in the region of roll-up were 
amalgamated into a single equivalent vortex; by Spalart (1982) 
to reduce the computer time in the simulation of separated 
flows where a manually adjusted error limit on the difference 
of the velocity fields before and after the emerging was in
troduced to keep the total number of vortices near a chosen 
number. 

The merging processes described above are irreversible, i.e., 
the merged vortex does not become unmerged at a later time 
and its strength remains constant. In the case of the tip-vortex, 
however, the strength of the merged vortex grows at each time 
step (a black hole from which no vorticity escapes). Clearly, 
remerging and/or merging of vortices with large circulations, 
large inter-vortex spacings, and small distances from the body 
have incalculable consequences and are strongly discouraged. 

Another type of merging, which we will call "pseudo-
merging," is used to split the Biot-Savart interaction between 
N vortices into long- and short-range effects in order to 
decrease the N2-dependence of the calculations and hence the 
CPU time. The merging is temporary and fictitious, i.e., the 
distant vortex cluster retains its original form at the end of the 
time step. Only short-range effects involving nearby vortices 
are computed directly. Various versions of such a scheme have 
been used by Hockney et al. (1974), Hockney and Eastwood 
(1981), Spalart (1982), Tiemroth (1986a, 1986b), Ghoniem et 
al. (1986), Anderson (1986, the method of local corrections), 
Baden and Puckett (1988), and Greengard and Rokhlin (1987, 
the fast multipole method). 

Tiemroth (1986a) introduced what he called the "discrete 
vortex in cell algorithm (DVIC)." Aside from the apparent 
similarity of the names, the DVIC scheme, has nothing in 
common with the VIC (vortex-in-cell) scheme to be discussed 
in Section 2.6. In the DVIC scheme, a potentially large collec
tion of line vortices or blobs are temporarily replaced (at each 
time step) by a single vortex. The basic idea is that a group of 
vortices or blobs behaves as a single vortex if one is far enough 
away that the leading term in a series expansion of the com
plex velocity is dominant, and that one can approximate the 
velocity field at any point in the domain of convergence with 
arbitrarily high accuracy by using enough terms in the series. 

For this purpose, (i) a temporary grid of suitable cell size is in
troduced to group the vortices, (ii) "p" Laurent series terms 
(the number of terms being retained in the Laurent expan
sions) are calculated from the series expansion of the complex 
velocity for each cell that contains more than "p" vortex 
blobs, and (iii) the velocity of each blob is calculated by using 
the Biot-Savart law for the blobs within a given cell and within 
the "q" adjacent cells, and, using the first "p" terms of the 
series for all other cells. The accuracy of the method, the cost 
of the overhead and the actual computer time saved depend on 
the cell size, the choice of "p," the use of real or complex 
variables, the distribution, number, and the core size of the 
blobs, judicious selection of the "mass center" of the blobs in 
a cell, the existence of single sign or both signs of circulation in 
a cell (blobs are grouped according to the sign of the circula
tion and treated separately to avoid more complex centroid 
problems), and the time invested in coding. Tiemroth carried 
out a series of sample calculations to ascertain the relative er
ror for the DVIC algorithm and the CPU time. It appears that 
the advantages of the DVIC scheme are only marginal. 
However, it does preserve the grid-free character of the vortex 
model. Spalart's (1982) scheme is essentially the same as that 
described above. 

The "dipole-in-cell" (DIC) method, developed by Ghoniem 
et al. (1986), is another effort to reduce the CPU time in deal
ing with a large number of vortices or blobs. The flow field is 
divided into a number of square cells M. As in the DVIC 
scheme, blobs in a given cell are temporarily combined into 
two blobs, according to the sign of their circulation, and each 
is placed at the "center of mass" of their like-sign counter
parts through the use of the conservation of the first moment 
of the vorticity field. The vortex blobs in a cell are replaced by 
a dipole located at the centroid of the original vorticity and 
used to update the induced velocity in the far field. The name 
"dipole-in-cell" is a misnomer since the strengths of the like-
sign vortices in a cell are not necessarily identical. In fact, they 
may all be the same sign. 

Anderson's (1986) method of local corrections approx
imates the far-field interactions by solving a discrete Poisson 
equation through the use of a finite difference mesh, with 
spacing h, superimposed on the domain. Greengard and 
Rokhlin's (1987) fast multipole method uses multipole and 
Taylor series expansions together with a hierarchical refine
ment of the computational domain in order to carry out N-
vortex interactions in an amount of time proportional to N. In 
both methods, the interactions with near neighbors are com
puted directly. 

It is clear from the foregoing that merging is used partly to 
overcome the pathological problems of the vortex methods, 
partly to decouple the local and far field interactions in order 
to reduce the computer time, and partly, and justifiably, to 
simulate the behavior of nature. Its use requires many 
numerical experiments, interactive computing, and a "feel" 
for the flow simulated. 

2.5.3 SubvortexMethod. Maskew (1973, 1977), concerned 
with the problems associated with the vortex-sheet roll-up in 
two dimensions, noted that the "core models" are applied 
without reference to neighboring vortices and are not satisfac
tory for both components of velocity. The "spread models," 
where vorticity associated with each vortex is distributed on 
the two straight segments joining the vortices (e.g., in a 
triangular fashion), require information about the neighbor
ing vortices, and its three-dimensional form is cumbersome to 
apply. Maskew proposed a discretized form of the spread 
model, the so-called "subvortex technique," where the sub-
vortices with a Rankine-vortex core are distributed evenly 
along the sheet joining the vortex to its two immediate 
neighbors. He has shown that the discretization of a vortex 
sheet introduces significant velocity errors only within a 
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distance from the sheet equal to the vortex spacing in the lat
tice. His technique enhances the versatility of vortex-lattice-
based methods by providing the effect of a much finer 
discretization (i.e., preventing the "holes" in the lattice from 
being "seen"). The subvortex technique increases the com
putation time and is not expected to prevent the occurrence of 
instabilities in the roll-up of vortex sheets. It has been 
rediscovered by Ghoniem et al. (1987a, 1987b, 1988) for the 
simulation of reacting shear layers and by Mook et al. (1987) 
for the simulation of unsteady wake behind an airfoil. 

Meng and Thomson (1978) repacked the vortices either by 
adding a new one or deleting an old one when the separation 
distance between neighboring vortices exceeded or fell below a 
preset limit. They have also proposed (but not actually used) 
to impose an equal-separation-distance scheme according to 
which the vortices and the physical variables are rearranged at 
each time step. A scheme similar to those of Maskew (1977) 
and Meng and Thomson (1978) was used by Siddiqi (1987) in 
connection with the Trefftz problem. Starting at the tip and 
using the slope information, he fitted, at each time step, a 
cubic spline to the sheet and redistributed each line vortex into 
two equal vortices when the sheet segment representing the 
vortex stretched beyond a prescribed amount. The basic aim 
of the redistribution (at the expense of increasing the number 
of vortices) is to try to keep the sheet segment length per 
vortex approximately constant so as to ensure that each roll-
up turn is represented by an adequate number of vortices. Sid
diqi was able to obtain three turns at a time when 90 percent of 
the circulation has rolled up. 

2.5.4 Rediscretization Method. Fink and Soh (1974, 1978) 
compared the multi-vortex model with the original Cauchy 
principal-value integral [equation (7)] and concluded that the 
late time randomness is a consequence of the representation of 
the continuously evolving vortex sheet by an ever-increasing 
population of discrete vortices, i. e., the integration errors are 
the cause of the chaotic motion. They have shown that the 
Cauchy principal value evaluation of the Biot-Savart integral 
for the induced velocity of a segmented continuous vortex 
sheet includes a term, proportional to the logarithm of the 
ratio of the distances between adjacent vortices, which is not 
accounted for in the line vortex repesentation of the sheet. 
Their major conclusion was that the logarithmic term may be 
eliminated and thereby the errors could be significantly re
duced if the vortices were equally spaced along the sheet 
(rediscretization or regridding). At each time step, the vortici-
ty density is represented by an entirely new set of equidistant 
vortices whose strengths are adjusted to give a good represen
tation of that density. This is the essence of the rediscretizaton 
method. Evidently, this procedure does not resolve all of the 
computational errors particularly in regions where the cur
vature of the sheet is small, e.g., the region close to the center 
of the vortex spiral. Furthermore, the curve-fitting errors in
curred in the process of interpolation at every time step may 
accumulate as time increases. Fink and Soh's (1974) sample 
calculations, including the roll-up of a vortex sheet (where the 
tip vortices are allowed to amalgamate into a growing central 
line vortex), showed smooth roll-up for much longer periods 
of time than had been previously reported, but the details of 
their rediscretizaiton scheme are lacking. 

Fink and Soh's (1974, 1978) method and other rediscretiza
tion, regridding, or redistribution techniques (e.g., Siddiqi 
1987) can slow down the effects of the discrete form of the 
Helmholtz instability (Moore, 1979, 1981, 1984) but do not 
make the vortex-sheet methods convergent. Furthermore, they 
introduce some diffusion of vorticity, either along or away 
from the sheet, and, hence, errors into the calculations at all' 
wavelengths. Sarpkaya (1975a) found no special substantial 
improvement when using Fink and Soh's method instead of 
the method of line vortices for the roll-up of vortex sheets shed 
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from an inclined plate in a uniform ambient flow started im
pulsively from rest (Sarpkaya 1975b). Sarpkaya and Shoaff 
(1979a, 1979b) have further explored the strengths and 
weaknesses of the rediscretization scheme in connection with 
an impulsively-started flow about a circular cylinder (Sarp
kaya 1966, 1978b). 

Baker (1976, 1977, 1980) has shown that (i) the smoothing 
achieved by Fink and Soh is a consequence of keeping the 
point closest to the spiral center fixed during the process of 
rediscretization, assigning to that fixed point the vorticity 
necessary to conserve circulation, and the strong flow induced 
by the amalgamated vortex (see also Faltinsen and Pettersen 
1982), (ii) the accumulation of vorticity at the tip in an ad hoc 
manner is an approximation to the innermost turns of the 
spiral, (iii) the method is unreliable and eventually leads to the 
sheet kinking and crossing (becoming increasingly severe as 
the number of vortices is increased), (iv) the method is not 
suitable for treating a general class of flows, and (v) the Fink 
and Soh method ignores the sheet curvature (equal spacing in 
chordlength instead of arclength was used) and hence it is only 
first order accurate in the roll-up region. Baker (1980) has fur
ther shown that the application of Fink and Soh's method to a 
ring wing (the circular vortex sheet with sinusoidal vorticity 
distribution for which there is an exact solution) failed to pre
vent the sheet from crossing itself (see Fig. 2). 

Moore (1981) discussed the effects of Fink and Soh's 
smoothing technique and Longuet-Higgins and Cokelet's 
(1976) five-point filtering technique, [z; = (-z,_2 + 4z,-_1 + 
10z; + 4z,+ 1 - z,-+2)/16] (originally designed to suppress a 
"sawtooth" instability in the computed free surface) and 
found that both techniques improved the results, but still led 
to the sheet crossing. Roberts (1983) showed that the five-
point scheme of Longuet-Higgins and Cokelet may lead to 
hopelessly large errors in some applications. He used Fourier 
spectral representations for the position and potential of a free 
shear layer and was able to remove the numerical instability by 
a simple modification of the highest (even) Fourier mode. 

Higdon and Pozrikidis (1985) used a higher-order 
rediscretization scheme replacing the continuous vortex sheet 
with a collection of circular arcs and the circulation distribu
tion with piecewise trigonometric polynomials. The time step 
was continually adjusted, such that the maximum angle 
subtended by the arcs did not exceed a specified limit during 
the time step. The concept is quite similar to that of Mangier 
and Smith (1959) who used a single arc to model the inner por
tion of the vortex sheet shed from a delta wing, and to that of 
Hoeijmakers and Vaatstra (1983), who used an adaptive 
curvature-dependent-segment scheme and piecewise 
polynomial representations of arc shape and vorticity to 

Fig. 2 Chaotic motion of vortices in the spiralling region of a vortex 
sheet 
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simulate the roll-up of a vortex into an amalgamated core. 
Higdon and Pozrikidis studied the evolution of two special 
sheets: a circular vortex sheet with sinusoidal circulation 
distribution (representing a vortex sheet shed by a thin circular 
rim or wing at small angles of attack), (see also Baker 1980), 
and an infinite plane vortex sheet subjected to periodic distur
bances (see also Meiron et al. 1982). They have concluded that 
their calculations provide a good description of the roll-up, 
but cannot give an exact result for the shape of the sheet at the 
critical time: the time at which a singularity forms in the 
vortex sheet (Moore, 1979, Meiron, et al., 1982, Krasny, 
1986a, 1986b). The appearance of singularity or the onset of 
the breakdown of predictability at a finite time is attributed to 
the combination of increasing velocity, decreasing lengthscale, 
and hence the diminishing timescale. In the case of the Fink 
and Soh model, the use of equally-spaced points prevents a 
resolution fine enough to analyze the singularity. The poten
tial loss of resolution, which is usually provided by more close
ly spaced Lagrangian points in areas of large gradients, is a 
serious disadvantage. However, compared with other 
numerical smoothing schemes, rediscretization can potentially 
remove less energy from the system, especially in the limit of 
very small vortex spacings (but see Section 2.6). 

Krasny's (1986a) scheme is based on a filtering technique 
through the use of fast Fourier transforms in order to inhibit 
the destructive effects of round-off errors. The amplitudes 
that have magnitudes less than the floating-point precision of 
the calculation are set to zero at each time step. Krasny applied 
this technique to a periodically perturbed vortex sheet and ob
tained convergent results up to the estimated time that the cur
vature singularity appears. Beyond that time, one has to use 
one of the other smoothing techniques to stabilize the 
calculations. 

To sum up, rediscretization of line vortices or vortex 
segments delays, but does not prevent, the occurrence of an in
stability at a finite time. Apparently, the vortex sheet method 
is not convergent after this time. There is a potential loss of 
resolution in areas of large gradients. Part of the reason for 
the smoothness of the results obtained with rediscretization is 
attributable to the strong flow induced by, and the stabilizing 
effect of, the amalgamated vortex. The combination of these 
two schemes delays but does not inhibit the instabilities in the 
roll-up process. To be sure, the instability is not limited to 
vortex methods. It is also an inherent characteristic of the 
space discretization methods. 

2.6 Cloud-in-Cell (CIC) or Vortex-in-Cell (VIC) 
Method. The use of the Biot-Savart law to calculate the 
velocities of a large number of vortices (as many as 100,000) 
stretches the capacity of even the fastest computers of the day 
and requires methods to reduce the CPU time (the community 
of super computer users is relatively small, but is growing 
rapidly). A similar requirement, not related to the use of the 
Biot-Savart law, had existed in the early 1950's in connection 
with the solution of complex flow problems. It is in response 
to that need that the particle-in-cell (PIC) or marker-in-cell 
(MIC) method was developed at Los Alamos in 1955 (Harlow, 
1964), These methods combined some of the best features of 
both the Lagrangian and Eulerian approaches. The 
Lagrangian particles representing the elements of fluid move 
through a fixed Eulerian mesh which, in turn, is used to 
characterize the field variables. 

The PIC method has subsequently been used in plasma 
simulation where it acquired the new name of the "cloud-in-
cell" (CIC) method (Birdsall and Fuss, 1969; Langdon, 1970; 
Eastwood and Hockney, 1974; Eastwood, 1975). Christiansen 
(1973) used it to study the interaction of vortices (see also 
Christiansen and Zabusky, 1973; Baker, 1976, 1977; Meng 
and Thomson, 1978; Baker, 1979; Leonard, 1980a; Murman 
and Stremel, 1982). The method is now known as the CIC or 
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the VIC (the vortex-in-cell) method as far as computational 
methods with vortices are concerned. 

The key to the execution of this grid-dependent hybrid 
scheme is to bypass the Biot-Savart law and to use sequentially 
the Lagrangian frame to track the vortices, and the Eulerian 
frame to calculate the velocity field through the use of 
Poisson's equation. This requires a fine-enough grid (often 
with several levels of mesh), the assumption that the vortices 
in a given cell temporarily become cell-shaped blobs with a 
prescribed vorticity distribution (often uniform), a vorticity-
allotment scheme which allocates vorticity to the surrounding 
mesh points (i.e., from the location of the vortices to the 
nearest node points of the mesh), a numerical solution of 
Poisson's equation by a "fast Poisson solver" (these generally 
require fairly simple boundary conditions, see, e.g., Burridge 
and Temperton 1979; Schumann and Sweet, 1988), and an in
terpolation scheme which determines the velocities at the loca
tion of the original vortices (or at any other point) from the 
node point values. The last step couples with a Lagrangian 
description of vortex convection, completing a cycle of the 
VIC scheme. Normally, a simple bilinear interpolation pro
vides satisfactory results for both the vorticity-allotment and 
velocity-interpolation schemes. Both the stream function 
(Christiansen, 1973; Baker, 1979) and velocity potential (Mur
man and Stremel, 1982) have been used as the dependent field 
variable. The former is limited to two-dimensional flows. The 
latter is designed for nonlinear vortex wake modeling in three-
dimensional compressible potential flow calculations. 

The method is implemented as follows. In its simplest form, 
vorticity of the nth vortex in a given cell is allocated to the four 
surrounding meshpoints according to the area-weighting 
scheme, 

o>, = rV4,A42 /=1,2,3,4 (27) 

where ¥„ is the circulation of the vortex and A is the area or 
the cell (see Fig. 3). When the vorticity allotment to the sur
rounding meshpoints is completed for all vortices in all cells, 
Poisson's equation ( v 2 * = — w) is solved to obtain ^ , j at all 
mesh points (ij). Then the velocity components are calculated 
at (ij) through a simple differencing scheme, 

« w = ( V i - V i ) / 2 M (28fl) 
V,J=-<?I+IJ-%-IJV2M (28b) 

where Mis the cell dimension. The velocity of the nth vortex in 
the cell is then found from 

un = T,uiAi/A , vn='LviAi/A (29) 

These equations form a consistent set of interpolation func
tions in the sense that a single line vortex will not move in its 
own velocity field. The computing time used to implement the 
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Fig. 3 Area weighting scheme for the distribution of vorticity on the 
mesh (cloud-in-cell method) 
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solution depends on the configuration of the overlapping 
meshes, the complexity of the allotment and interpolation 
schemes, and the boundary conditions. 

The method also extends to the three-dimensional discrete 
Poisson equation, which can be solved by performing a two-
dimensional FFT on each plane, solving tridiagonal systems in 
the third direction, and then performing a two-dimensional in7 
verse FFT on each plane (Christiansen, 1973; Burridge and 
Temperton, 1979). 

The basic advantages of the VIC technique are as follows. 
The number of velocity calculations does not increase as N2 as 
in Biot-Savart approach. For incompressible flows, Poisson 
solvers require order M log2M operations where M is the 
number of grid points. Thus, the VIC technique requires less 
computing time (linear in TV) compared with the direct summa
tion method and enables one to track a larger number of vor
tices (several thousand) compared with several hundred with 
the direct summation. One must, however, be warned that in 
some cases the time saved may be disappointingly small 
because of the Eulerian-step overhead. The velocity field 
calculation is effectively desingularized by smearing the vor-
ticity over a cell area, i.e., a singular problem is desingularized 
by an artificial viscosity. However, the vortex wake remains 
well defined throughout the computational domain because of 
the Lagrangian treatment of the vorticity field. This is unlike 
the Eulerian treatments which lead to the rapid dissipation of 
the dependent field variable in compact regions of vorticity, 
unless multiple scale grids or an adaptive mesh are used to ex
hibit features which vary rapidly over a wide range of spatial 
and temporal scales (see, e.g., Erlebacher and Eiseman, 1987). 
Finally, the Lagrangian part of the hybrid scheme enables the 
vortical structures to "float" over the fixed Eulerian mesh of 
the velocity field (Harlow 1964; Murman and Stremel, 1982). 

The disadvantages of the VIC scheme may be summarized 
as follows. It makes an otherwise grid-free method once again 
grid-dependent. Thus, the minimizing of the blockage effects 
in bluff-body flows may require a prohibitively large number 
of cells. The use of overlapping meshes may alleviate the prob
lem but it may also introduce errors hard to assess. The VIC 
scheme introduces a pseudo-viscosity into the flow (some may 
regard it as an advantage for it stabilizes the velocity field 
calculations) and gives a finite width to the vortex sheet 
because vorticity is spread over a mesh cell area. The Eulerian 
step smoothens the conceptual diffusion of vorticity but the 
Lagrangian step preserves the singular character of the line 
vortex. Both the Eulerian and Lagrangian steps create 
numerical errors and lead to some anisotropy on the smallest 
scales. Consequently, the method and its fine-scale behavior 
are sensitive to the size of the mesh, the surface boundary con
ditions, the number of vortices and the time-step, as noted by 
Murman and Stremel (1982) and Rottman et al. (1987). The 
flow features of scale smaller than the grid cannot be accurate
ly resolved. Thus, the CIC simulation (e.g., of a "turbulent" 
mixing layer) may not reproduce the actual flow as faithfully 
as the direct summation simulation. On the other hand, vortex 
models do not and should not pretend to deal with fine-scale 
structures. This is a disadvantage also shared by finite dif
ference calculations which do not predict eddies smaller than 
the mesh spacing and unsteady phenomena faster than the 
scale of the time step used (Braza et al., 1986). It is generally 
assumed that the behavior of large scale vortex structures is 
relatively insensitive to the fine-scale instabilities (which is not 
rigorously true in a turbulent flow, Kourta et al., 1987) and to 
the precise details of the initial perturbations. 

Christiansen (1973) investigated the motion and the stability 
of line vortices arranged to simulate Rankine's combined 
vortex. He has conducted seven numerical experiments on the 
test model and found that the most significant numerical error 
arises from the anisotropic CIC-interpolation of velocities 
given by equation (29). He has concluded that the only way to 

remove the truncation errors associated with the finite dif
ference forms is to adopt either a more complex interpolation 
algorithm or to employ a different mesh structure (for exam
ple a hexagonal or triangular mesh). Interpolation algorithms, 
much more costly than the CIC method, have been developed 
by Hockney et al. (1974) for applications in plasma simula
tions where isotropic force fields from single particles are re
quired (see also Christiansen and Zabusky, 1973). 

An interpolation function, smoother than the original four-
point weighting, was suggested by Peskin (1977), in a slightly 
different context, and subsequently used by Tryggvason 
(1988a) in connection with the numerical simulation of the 
Rayleigh-Taylor instability and the vortical structures arising 
out of it (see also Kerr 1988). Wang (1977) used cubic splines 
for interpolation (i.e., referring to the nearest 16 grid points 
rather than the nearest 4 for each vortex node) and a Gaussian 
shape factor or "filter" in wave vector space. In their 
generalization of the CIC scheme to the analysis of a vortex-
sheet interface, separating two fluids of slightly different den
sities, Meng, and Thomson (1978) used the bilinear interpola
tion scheme and a vorticity distribution for each vortex which 
approximated a Gaussian distribution. 

In a careful study of vortex wake roll-up, Baker (1979) ap
plied the CIC method to the simulation of two-dimensional 
vortex sheets generated by a wing and by a wing-flap con
figuration (see Fig. 4). He demonstrated that the redistribu
tion and interpolation errors introduce instabilities in the 
vortex sheet on the order of the mesh spacing. Murman and 
Stremel (1982) developed an algorithm to compute vortex 
wake features in two dimensional time-dependent potential 
flows. The approach is a modification of Baker's (1979) 
method for the stream function-vorticity equations. Other ap
plications of the VIC scheme are described in Section 3.3. 

2.7 Body Representation. Analysis of flow through the 
use of vortex methods requires exact or approximate methods 
to satisfy the condition that the resulting flow is parallel to the 
body surface, or that the body is a streamline, or that the nor
mal velocity relative to the body is zero, if possible, 
everywhere on the body contour, if not, at a number of col
location points. The zero slip-velocity condition and vorticity 
generation will be discussed later. 

For three-dimensional bodies, the use of the vortex or 
doublet sheets to satisfy the zero normal velocity condition is 
quite common. Two-dimensional flows have more alter
natives. The very special, and yet the most studied, case of 
flow about a circle needs nothing more than the simple circle 
theorem which yields an image per vortex at the inverse point 
(no image is needed at the center for it would violate the condi
tions at infinity, unless flow symmetry is imposed with respect 
to the x-axis). In placing a cylinder of arbitrary cross-section 
into a two-dimensional flow, one could use, if possible, an ex
act conformal transformation (e.g., the Shwartz-Christoffel 
transformation) (see, e.g., Sarpkaya, 1975; Clements and 
Maull, 1975; Nagano et al., 1981) or an approximate 
numerical transformation through the use of a truncated 
Laurent series (von Kerczek and Tuck, 1969; Shoaff and 
Franks, 1981; Dawson and Marcus, 1970) or isolated or 
distributed singularities or panels (sources, sinks, vortices, or 
vortex or doublet sheets) (see, e.g., Hess and Smith, 1964; 
Hess, 1975; Hess and Friedman, 1981; Lewis, 1981; Porthouse 
and Lewis, 1981; Chorin, 1978; Hoeijmakers 1983; Inamuro 
et al., 1984; Sarpkaya and Ihrig, 1986). The last two methods 
require an assessment of the leakage through the boundary. 

The use of a conformal transformation for a two-
dimensional flow requires a special rule (Routh's rule, as 
described below) to calculate correctly the velocities in the 
physical plane. 

2.7.1 Routh 's Rule. In computing the complex velocity at 
the position of a line vortex in the physical z-plane through the 
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Fig. 4(a) Vorticily distribution behind a wing-body with deployed flap 
at different times (Baker, 1977) 

use of that in the transformed X-plane, U=/(X)] , the 
straightforward differentiation of the complex velocity poten
tial F(\) as, 

^ ( X ) - ^ l o g ( X -
dX 2TT 

•K) 
l 

J/ ' (X) 
(30) 

is not sufficient. The velocity of a vortex in one plane does not 
give the correct velocity when transformed to another plane. 
As first noted by Routh (see, e.g., Milne-Thomson, 1969), the 
transformation gives rise to an additional term, often referred 
to as Routh's correction. The corrected velocity in the physical 
plane then becomes 

uk-wk=- d\ 
[F(X)--J*log(X-

2TT 
•x*) 

1 

/'(X) 

'Tk f'(kk) 
4TT [f'(Kk)V 

(31) 

where the vortex position \k in the transformed plane cor
responds to that at zk in the physical plane. The last term in 
equation (31) is Routh's correction and results from the fact 
that the determination of the velocity at zk requires the sub
traction of (iTk/2ir)log(z-Zk) from F(K) or, in terms of X, the 
terms 

El 
2TT 

log(X- ^<°4-B (32) 

in which c is the radius of the circle in the X plane and the last 
term is the source of Routh's correction. The various versions 
and applications of equation (31) have been given by Sarpkaya 
(1968a), Clements (1973a, 1973b, 1977), Sarpkaya (1975b), 
Conlisk and Rockwell (1981), and Panaras (1985). 
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fm 

Fig. 4(b) Wake behind ring wing: (a) cloud-in-cell method (Baker, 1976); 
(b) panel method (Hoeijmakers and Vaatstra, 1983) 

2.7.2 Surface Singularity Distributions. The use of sur
face singularity distributions for two- and three-dimensional 
attached flows is well advanced and has been extensively 
described in the past (Hess and Smith, 1964; Hess and Fried
man, 1981; Webster, 1975; Pien 1964; Chang and Pien, 1975; 
Johnson and Rubbert, 1975; Asfar et al., 1979; Noblesse, 
1983; Nagati et al., 1987). 

In its most general form, the surface is represented by 
source and doublet sheets (or equivalently vortex sheets). 
Either the Neumann condition (3</>/d« specified) or the 
Dirichlet condition (</> specified) is used. Green's theorem is in
voked to express the fact that any solution $ can be expressed 
as the sum of the influences of source and doublet sheets on 
the boundary surface. The resulting integral equation is 
discretized into a set of algebraic equations and solved 
numerically for the strengths of a finite number of discrete 
singularities on or near the body surface by enforcing the 
boundary condition (typically, a Neumann boundary condi
tion) at collocation points. However, because this can lead to 
numerical difficulties, the Neumann condition is transformed 
into a internal Dirichlet condition using Green's theorem to 
obtain a Fredholm integral of the second kind. Here the 
discussion is limited to two-dimensional flows. An in depth ac
count of the mathematical details of the boundary integral 
method is given by Hunt (1980). 

It is a well-known fact that across a vortex sheet the normal 
component of velocity is continuous and the tangential veloci
ty jumps by an amount y (the strength of the vortex sheet). 
One half of this jump is on the external side of the sheet and 
an equal but opposite amount is on the internal side of the 
sheet (as in the case of two counter-flowing streams with 
velocities 7/2). Thus, the condition that the body contour is a 
closed streamline may be satisfied by rendering the sum of the 
velocities just inside the contour equal to zero everywhere. The 
resulting integral equation can be discretized in a straightfor
ward manner using a panel method with straight line or curved 
segments along which the vorticity is either piecewise constant 
(a first order scheme) or varying linearly with matching end 
point values (or even a higher-order scheme). In practice, the 
body contour is represented by M straightline segments along 
each of which 7 is constant. Then the condition of zero inter
nal tangential velocity at the rth collocation point (in the mid
dle of the /th segment) is given by 

u,eV)+t,y(im,J)=o (33) 
7=1 

where U'e (0 is the tangential velocity at the /'th collocation 
point due to the ambient flow plus all other singularities in the 
flow, (calculated before the introduction of the vortex sheet), 
y(f) is the strength of the y'th segment, and K(iJ) is the cou-
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Fig. 5 Discretization of a two-dimensional contour 

pling coefficient or the influence matrix, dependent strictly on 
the geometry of the body. It can be evaluated and stored once 
and for all through the use of 

m 
1 1 [sn [r(s)xej«r,£fa 

lr(s) l2 (34) 

when dfj is the Kronecker delta, r(s) is the position vector of 
the /th collocation point from the point s on they'th segment, 
and t; is the tangential unit vector at the rth collocation point. 
In matrix form, equation (33) may be written as 

[K][y] = [b] with b{i)=-We{i) (35) 

Further simplification may be achieved by representing the 
body by M line vortices of strengths T(j) = y(j)ks (J), located at 
the center of each segment, rather than by sheet segments (see 
Fig. 5). Then the coupling coefficient K(iJ) reduces to 
(Martensen 1959) 

- (36) WJ) = —5U-
2v [ixi-Xjf + ^-yjf] 

Note that the tangential velocity U'e(i) also may be expressed in 
terms of a coupling coefficient, very similar to K(i, j), and the 
gradient of the velocity potential representing the ambient 
flow plus all other singularities in the flow field. 

Equations (33) and (35) do not yield a unique vorticity 
distribution due to the nearly singular nature of the matrix K. 
However, one may regularize the matrix K and render the vor
ticity distribution unique by assuring the continuity of the 
pressure gradient on the body (see Section 2.1 and Morton, 
1984), i.e., by enforcing the necessary condition that 

§y(s)ds = 0 or £ Y ( / ) A S ( 0 = O (37) 

If there are additional bodies in the flow, equation (37) must 
be satisfied for each for exactly the same reasons. The use of 
M collocation points (e.g., the midpoints of the segments) 
leads to (M+ 1) equations [including equation (37)] and M 
unknowns (7,). The ambiguity may be resolved, for example, 
by ignoring one of the collocation points (Stansby and Dixon 
1983). However, the fact remains that the "̂  = 0 condition is 
satisfied only at the collocation points, i.e., the body is 
represented only approximately at points other than the con
trol points. One can minimize the error by using, for example, 
a least squares technique to minimize the residues of equation 
(33) at as many control point as possible rather than rendering 
equation (33) exactly zero at a few number of points (Sar
pkaya and Ihrig 1986). One may also use the Lagrangian 
multiplier (X) method to minimize an appropriate functional 
with respect to 7 and X (Tiemroth 1986a). 

A body may also be represented by a set of discrete vortices 
whose positions are fixed but the strengths are calculated at 

each time step to satisfy the zero normal velocity condition 
either exactly at (M— 1) points or approximately at a larger 
number of points through the use of the least squares tech
nique. The condition that the total circulation of all the vor
tices (on the body and in the wake) must be zero is used as the 
Mth equation (Inamuro et al., 1983, 1984, Sarpkaya and 
Ihrig, 1986). 

2.8 Shedding of Discrete Vortices From the Separation 
Points. Discrete vortex or discrete vorticity models (DVM) 
have been applied extensively to separated flow about bluff 
bodies with the added predicaments, repeated almost ad 
nauseum: how is separation to be defined, where are the 
separation lines, what is the rate of shedding of vorticity, how 
does the separating stream surface leave the body, what condi
tions should be satisfied at the separation lines (s), what is the 
relationship between the Kutta condition and separation from 
a smooth surface (both for steady and unsteady flows about 
interacting or non-interacting bodies), and what are the effects 
of the numerical and facility-related parameters on separation 
and asymmetry inception? These questions still remain essen
tially unresolved (see, e.g., Peake and Rainbird, 1975). 

Vorticity may be shed either from the separation points 
(which must be known a priori) or from the entire surface of 
the body or partly from the separation points and partly from 
a prescribed segment of the body surface (using the no-slip 
condition to determine their strength and the core radius to 
determine their position). This section deals only with the 
shedding of nascent vortices from the separation points. It will 
be assumed that the separation points are either fixed, as in the 
case of sharp-edged bodies, or known through experiments, or 
by a boundary-layer calculation coupled with the inviscid solu
tion. This is where the vortex methods exhibit their greatest 
weakness for a number of reasons, particularly for unsteady 
flows. 

The methods used in the past for the determination of the 
rate of vorticity may be roughly classified into two broad 
categories. The first of these involves the use of variable nas
cent vortex positions (Sarpkaya, 1968b, 1975) and the second, 
the use of fixed nascent vortex positions (see, e.g., Clements, 
1973b; Clements and Maull, 1975; Kiya and Arie, 1977a). 

The method of fixed positions involves the selection of a 
suitable point in the flow near the separation point and the use 
of the velocity Us at that point to calculate the rate at which 
vorticity is shed into the wake from 

9T 1 . 

—=—ul 
dt 2 s 

(38) 

with some inspiration from the seminal works of Fage and 
Johansen (1927, 1928). The previous applications of this 
method did not examine the effect of the position of the nas
cent vortices on the velocity distribution in the neighborhood 
of the separation point. Only the distance of the fixed point to 
be body was varied and bracketed between two subjective 
limits by comparing the calculated results with those obtained 
experimentally (Kiya and Arie, 1977a). In this method, no in
teraction is allowed between the shed vortices and the 
amplitude of oscillation of the point or the time of appearance 
of the nascent vortices. Furthermore, the time interval is 
chosen more or less arbitrarily (Kiya and Arie, 1977a, 1977b) 
(repeating a few calculations with a single program with only 
the time step changed and also by referring to the results of the 
previous investigations). Thus, the velocities at the outer edges 
of the shear layers are only indirectly related to the strength of 
the nascent vortices and the fixed time interval. Evidently, the 
velocities in the inner and outer edges of the shear layers, the 
time interval, the strength and position of the nascent vortices, 
and the Kutta condition are interdependent. Thus, the posi
tion of the nascent vortices and the time interval cannot be 
chosen arbitrarily, even if they are chosen judiciously on the 
basis of previous experience and trial calculations. 
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Sarpkaya (1975b) used the method of variable nascent 
vortex positions and determined the rate of shedding of vor-
ticity from the relation 

where Ush is interpreted as the velocity in the shear layers 
calculated by using the average of the transport velocities of 
the first four vortices in each shear layer. The positions of the 
nascent vortices are chosen so as to satisfy the Kutta condition 
at the edges of the body and thus they can move slightly with 
time. Thus, this method simulates in a satisfactory manner the 
mechanism of feedback from wake fluctuations to the fluctua
tions in the rate of circulation. The number of disposable 
parameters is reduced to a minimum and in this sense this 
method is superior to the method of fixed positions. However, 
the use of the average of the transport velocities of the first 
four vortices remained questionable. 

Sachs et al., (1967) placed, in the plane of a wing, a sheet of 
vorticity of strength 7 (per unit length) and length As = V,At, 
V, being the velocity induced at the tip by the vortices in the 
field. The value of 7 was determined from the Kutta condition 
that the flow leaves the plate smoothly. The sheet was then 
replaced by a single vortex or strength yAs at a point in the 
wing plane which again satisfied the Kutta condition. The nas
cent vortex was moved with the velocity induced at that point 
(see also Piziali, 1966; and Duffy, et al., 1984). Evans and 
Bloor (1977) studied the flow past a flat plate of height h in a 
channel. The nascent vortex was placed at a point 
z = i(h + e/2), in the plane of the plate, and the vortex strength 
was taken to be 0.5IfiAt, U being the velocity at z = i(h + e). 
The value of e and hence Ar were found from the Kutta condi
tion (see also Kiya et al., 1982 for a slightly improved version 
of this scheme). 

In applications to sharp-edged bodies, it was often assumed 
that the vorticity flux could not be calculated through the use 
of the mathematically finite velocity occurring at the sharp 
edges of the body. This assumption was based on the fact that 
the separation points are singularities of the transformation 
used and the numerical procedures may not be stable. Mostafa 
(1987) has shown that the tip velocity can be calculated ac
curately and that the nascent vortex does not necessarily lie in 
the plane of the plate. 

In the case of the circular cylinder, the nascent vortex was 
usually placed at a distance e from the cylinder surface (with 
its image at the inverse point) along the radial line passing 
through the separation point. Assuming zero slip velocity at 
the separation point and a suitable At, the values of e and 
Ar = 0.5 l/^At were calculated. The velocity Us was either 
taken as the velocity at the separation point prior to the in
troduction of the nascent vortex (Deffenbaugh and Marshall, 
1976; Sarpkaya and Shoaff, 1979a), or found by iteration 
(Stansby, 1977). 

The foregoing is only a small sample of the schemes used to 
introduce nascent vortices. Evidently, letting a body give birth 
to vorticity in discrete steps, in an otherwise continuous pro
cess, is not a simple matter. None of the method cited above 
related At to both e and Ar, nor dealt with the breakaway 
angle of the separation streamline, nor with the velocity 
distribution in the vicinity of the separation point after the in
troduction of the nascent vortex. 

Often the question arises regarding the angle which the 
separation streamline makes with the body. Oswatitsch (1957) 
has shown that the said angle for a viscous flow is given by 

tan^ = - 3(dTw/dx)/(dp/dx) (40) 

Sychev (1972), Messiter and Enlow (1973), and Messiter (1975, 
1983) have shown that the triple-deck equations describe finite 
Reynolds number effects in the neighborhood of the separa
tion point where the free streamline leaves the wall. This is in 

agreement with Prandtl's suggestion that a large-scale break
ing away of the boundary layer (separation) occurs in steady 
flow when the wall shear stress vanishes. The separation 
streamline becomes tangent to the body in the limit as c—0. 
This is not in conflict with the Oswatitsch relationship. The 
flow that is being modeled here is viscous (meaning finite 
Reynolds number) and it is perfectly permissible to have a 
separation at non-zero angle with respect to the wall, 
regardless of the character of the singularities used to con
struct the model. 

Figure 6(a) shows the velocity distribution near the separa
tion point of a cylinder. The vortex was placed at e = 0.04 and 
was given a small core to eliminate the discountinuity in the 
velocity profile near the vortex position. Clearly, the no-slip 
condition is satisfied but there is a back flow slightly above the 
cylinder surface. It is the occurrence of such a back flow that 
pushes the separation point further and further upstream at 

Fig. 6(a) Velocity profile along the radial line passing through the 
separation point (nascent vortex on the radial line) 

Fig. 6(b) Velocity profile along the radial line passing through the 
separation point (nascent vortex on the 32°-line) 
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each time step. The vortex has to be placed at a point such that 
both the no-slip condition and the no-back-flow condition are 
satisfied. A systematic study shows that the nascent vortex 
must be placed on a 32-degree line, passing through the 
separation point (see Fig. 6(b)). This result is not dependent on 
the number of vortices shed in the previous cycles since the 
velocity distribution in the vicinity of the separation point is. 
dictated by the nascent vortex and by the separation velocity 
Us, which includes the effect of all the elements characterizing 
the flow prior to the introduction of the nascent vortex. The 
calculations may be performed as follows. Assume a vortex 
position along the radial line; find the vortex strength from the 
no-slip condition; calculate At from AT/(0.5U%); and convert 
all vortices with the velocity induced on them for a time inter
val At. The time interval varies from cycle to cycle. If At is too 
large or too small (depending on the convection scheme used: 
simple Eulerian or higher order scheme), one may choose the 
initial fixed position of the vortex closer to or further away 
from the surface along the 32-degree line. The second alter
native is to use a fixed At and to find the position of the vortex 
along the said line by iteration so that the no-slip condition is 
satisfied. The time step should be chosen carefully enough to 
make sure that the displacement of the vortices in the regions 
of largest convection is sufficiently small to minimize cur
vature effects. The method described above eliminates most of 
the ambiguities associated with the earlier methods of nascent 
vortex introduction. Furthermore, it is not restricted to 
cylinders with mobile separation points. Mostafa (1987) and 
Munz (1987), working with Sarpkaya, on the simulation of 
decelerating flow about cambered plates, representative of a 
two-dimensional non-porous parachute, have described in 
detail the use of fixed and variable time-step methods (see also 
Sarpkaya et al., 1987 and Mostafa et al., 1987). 

The importance of the correctness of the position and 
strength of the nascent vortices stems from the fact that the 
position of the mobile separation points and the calculated 
forces (particularly the lift force) and pressures strongly de
pend on the strength and position of both the vortices in the 
immediate vicinity of the body, and the vortex clusters in the 
wake. The Strouhal number does not seem to be overly sen
sitive to the type of nascent vortex introduction. 

Another reason for the proper introduction of the vortices is 
the determination of the "correct" amount of the artificial 
circulation reduction to be applied in an effort to account for 
the differences between the numerical simulation and the flow 
simulated. Practically all applications of vortex models to 
unsteady separated flows past two-dimensional bluff bodies 
have shown that the circulation of the vortices should be 
reduced as a function of time and space in an ad hoc manner 
in order to bring the calculated forces, pressures, and circula
tions into closer agreement with those measured (for approx
imate measurements of apparent circulation, see Schmidt and 
Tilmann 1972). Such a circulation-reduction mechanism was 
first proposed and used by Sarpkaya and Shoaff (1979a, 
1979b). Subsequently, it has been used by other researchers in 
a variety of applications. The reduction in circulation is 
justified as accounting for the three-dimensional deformation 
of vortex filaments in physical and numerical experiments (for 
the latter, see Widnall 1985a, 1985b), assuming that the 
predictions of the numerical model are "correct" for the 
idealized two-dimensional flow. 

The preceding discussion has more or less settled everything 
required for the construction of a relatively simple model, ex
cept the most important question of where separation occurs. 
The determination of the separation points or lines would in 
principle require calculation of the boundary layer at each 
time step. Even in steady two-dimensional flow, separation 
points can only be predicted approximately and with difficulty 
for laminar flows and hardly at all for turbulent flows. In 
unsteady flow, the mobile separation points (when they are 

not fixed by sharp edges), may undergo large excursions. This 
experimental fact renders the treatment of boundary layers on 
bluff bodies subjected to periodic wake return extremely dif
ficult, particularly when the state of the boundary layer 
changes during a given cycle. 

A definition of separation that is meaningful for all kinds of 
unsteady flows has not yet been established. As pointed out by 
Simpson (1981), "it is too narrow a view to use vanishing sur
face shearing stress or flow reversal as the criterion for separa
tion. Only in steady freestream two-dimensional flow do these 
conditions usually accompany separation. In unsteady two-
dimensional flow, the surface shear stress can change sign with 
flow reversal, but without breakaway. Conversely, the 
breakdown of the boundary layer concept can occur before 
any flow reversal is encountered (Sears and Telionis, 1975, 
Telionis, 1979)." (see also McCroskey, 1982; Van Dommelen 
and Shen, 1983; Telionis and Mathioulakis, 1984; Geissler, 
1985; Poling and Telionis, 1986). According to the MRS 
criterion (Moore, 1957, Rott, 1956, and Sears, 1956, 1976), it 
is the simultaneous vanishing of the shear and the velocity at a 
point within the boundary layer that determines the separation 
point. However, even this definition is not without am
biguities. Taneda (1977, 1980) has shown experimentally that 
(i) the shedding of fluid particles from the wall is the most 
meaningful definition of separation for most time-dependent 
flows, (ii) this definition coincides with the Prandtl criterion in 
the case of steady two-dimensional flow over a fixed wall, and 
(iii) flow separation can be detected only by observing the in
tegrated streaksheet. 

An extension of the Kutta condition to unsteady flow has 
been suggested by Giesing (1968a, 1968b, 1969) and Maskell 
(1971), in connection with airfoils with sharp trailing edges: 
For a changing bound circulation, the stagnation streamline is 
parallel to the surface on the side of high total head. A lucid 
discussion of this proposal is given by Basu and Hancock 
(1978) (see also Archibald, 1975; Ho and Chen, 1981; Mc
Croskey, 1982; and Crighton 1985). The Giesing-Maskell con
dition does not reduce to the classical steady Kutta condition 
that the stagnation streamline in the aft of the airfoil is at
tached to the trailing edge. Two of the several consequences of 
the steady Kutta condition are that the pressure is continuous 
across the vortex sheet (the sheet is force free) and the 
velocities at the top and bottom at the trailing edge are equal, 
i.e., the stagnation streamline bisects the wedge angle of the 
airfoil. There is sufficient experimental evidence (see Krause et 
al., 1985 and Poling and Telionis, 1986) to show that the 
steady Kutta condition is violated in rapidly varying unsteady 
flows about airfoils. The method of Basu and Hancock (1978) 
for airfoils with one shedding edge was extended by Stansby 
(1985) to sharp-edged cylinders with two shedding edges, using 
an iterative procedure, some ad hoc assumptions and the VIC 
scheme. His attempts to apply the method to base edges and 
secondary separation of rectangular bodies were unsuccessful 
due to the extreme unsteadiness of the flow. The flow about 
sharp-edged bodies is discussed in greater detail in Section 
3.3.2. 

It appears that the question of separation will have to be set
tled empirically or experimentally. The finding of separation 
points, and the determination or specification of the bound
ary, should be regarded as separate problems as far as the 
discrete vortex models are concerned. Nevertheless, they tend 
to interact and whether one should attempt to solve them as 
part of the numerical model is another question. 

As far as vortex methods are concerned, the importance of 
the time history of the position of the separation point comes 
not only from the determination of the point introduction of 
new vorticity but also from the determination of the strength 
and the velocity of convection of the nascent vortices. In 
unsteady flow, the time rate of change of circulation is no 
longer given by dT/dt = 0.5U%, as in steady flow, where Us is 
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the outer flow velocity at separation, but by (0.5{7f - UsUe) 
where Ue is the speed of the separation point (Sears, 1976). 

2.9 Operator Splitting and Random Walk Methods 
2.9.1 Description of the Method. The sequential rather 

than simultaneous convection and diffusion of vorticity is 
known as the operator splitting or fractional-step or time-
splitting method. It was proposed by Chorin (1973) in connec
tion with his work on the flow of a "slightly" viscous flow 
over a circular cylinder in two dimensions. In this method, the 
vorticity equation is divided into a convective and diffusive 
part and the two equations are solved sequentially. Thus, in
stead of equation (2), one solves 

dco „ . . . . 
+ u-Vco = 0 (41) 

dt 
and 

doi 
= j'V2co (42a) 

dt 

or its suitably non-dimensionalized form 

^ - = A V 2 W {A2b) 

dt Re 

Thre Green function Gr of the one-dimensional form of 
equation (42a) 

( D a \ 

— - — y 2 ) (43) 
is identical to the probability density function P of a Gaussian 
random variable r\y with a zero mean and a standard deviation 
a 

P ( ^ ; 0 = Vl/27T(T2 e x p ( — ^ - i j 2 ) ( 4 4 ) 

if a=V2//Re. In two dimensions, one has: Gr(x,y,t) = 
Gr(x,0GrO,/) mdP(rix,riy;t) = P{?ix;t)P(i)y;t). Thus, the solu
tion of equation (42a) is simulated stochastically by a two-
dimensional displacement of the vortex elements in two or
thogonal directions using two independent sets of Gaussian 
random numbers, each having a zero mean and a standard 
deviation a = V2A//Re. This is an adaptation to 
hydrodynamics of Glimm's (1965) random choice method. 

Briefly, a typical application of the operator-splitting 
scheme proceeds as follows. The body surface is discretized in
to a number of sheet generation panels. The "zero normal 
velocity" condition is satisfied either exactly through the use 
of conformal transformation (if one exists) or approximately 
through the solution of Poisson's equation ( v 2 ^ = -co with 
u = yy and v= ~^x). The tangential velocity at the center of 
each panel is calculated as described in Section 2.7.2 and 
vortex-sheet segments (Chorin (1978) (or blobs as originally 
done by Chorin 1973) are generated in such a way that the slip 
velocity is nullified and no normal flow is introduced. This is 
the basis of the creation of new vorticity. At time t = nAt the 
vorticity is approximated by a sum of linear concentrations of 
vorticity so that 

y"(x,y) = D y,SjQc-x?) 8(y? -y) (45a) 

where 7,- is the strength of the rth vortex sheet, (x",y?) is its 
center, 8 is the Dirac delta function, and Sf is a smoothing 
function. Originally, Chorin (1978) used a "hat" or "tent" 
function defined as 

C\-\x/\\ \x\<\ 
«/(*) = \ (456) 

\0 otherwise 

where X is half the sheet length. Sf varies from unity at the 

center of the sheet to zero at each end. If the vorticity field is 
not accurately discretized (with vortex elements with suffi
ciently small circulation), parasitic vortex elements may 
emerge and the induced velocity field may be contaminated 
with large errors. Finding the "not to exceed" value of Ym 

which will make the results independent of Tm is not a simple 
matter. In fact, the number of elements used in the simulation 
appears to have the strongest influence on accuracy (Ghoniem 
and Cagnon, 1987). Furthermore, extreme caution is needed 
near the separation points (if known where!) and sharp cor
ners (Baden and Puckett, 1988) since the validity of the vortex-
sheet algorithm is dependent on the boundary layer approx
imation, which ceases to apply where the flow detaches from 
the wall. 

Once the discretization is complete, a random walk with 
Gaussian probability distribution and zero mean and standard 
deviation \f2t>At or c=V2A?/Re is given to each computa
tional element (the vortex sheets diffuse perpendicular to the 
wall only and the sheets that penetrate the body are reflected 
back into the flow). The sheets are transformed into blobs and 
vice versa at the edge of a constant thickness sheet layer (a 
numerical artifice, not a boundary layer). Each computational 
element is convected using a simple or modified Eulerian 
scheme, the latter often with negligible gain in accuracy, ex
cept possibly in the regions where the convection velocities and 
the time-integration diffusion are large. For example, Ng and 
Ghoniem (1986) had to use a higher-order scheme (Heun's 
method) to minimize the smearing of the structures in a shear 
layer and to numerically realize the experimentally-observed 
vortex-pairing (Eulerian convection did inhibit pairing). The 
velocities of blobs are determined either through the use of the 
Biot-Savart law (or its modified forms, as described in Section 
2.5.2) or through the use of the VIC scheme or a variationally-
optimized grid-insensitive vortex-tracing scheme (Buneman, 
1974; van der Vegt and Huijsmans, 1984). The velocity field 
for the sheets is calculated by adding the velocity on the body 
surface (just below the particular sheet) due to all other 
elements, except the sheets, to that induced by the sheets 
within the sheet layer. Normally, a second random walk is 
given to each element and the above process is repeated. The 
plots of velocity, pressure, force, etc. are averaged or 
smoothened over several time-steps to remove the random 
component associated with the method. 

The steps outlined above are certainly not unique and many 
different versions exist. Some authors have dispensed with the 
sheet-blob metamorphosis and discretized the vortex sheet in
to a set of new discrete vortices (e.g., P. A. Smith 1986) and 
applied a random walk for a time interval of At or At/2. Van 
der Vegt and Huijsmans (1984) removed the vortices which 
diffuse into the body in the time step immediately after their 
creation. The vortices from the previous time steps which dif
fuse into the body are replaced at the surface. Paul A. Smith 
(1986) simply reflected the discrete vortices lying inside the 
body. Tiemroth (1986) and Teng (1982) used highly complex 
sheet-blob-metamorphosis schemes through the use of various 
ad hoc assumptions. Van Dommelen (1987) simply placed the 
blobs on a circle of r = (c + 0.675 4lvAt and annihilated those 
which remained in the region c < r < (c + 1.27 \llvAt) following 
the convection and diffusion steps. Baden and Puckett (1988) 
discarded the blobs that end up outside the image of the sheet 
layer. Also, all their sheets had the same magnitude of 7max 

(maximum sheet strength). No sheets were created when 
\Uj I <7 m a x . Hence, the no-slip boundary condition is satisfied 

at a point only up to order 7max. Others (e.g., Chorin 1978) 
created sheets at the /th gridpoint whenever \ut I > 7min for 
some 7min < 7max such that the sum of the strengths of these 
sheets exactly cancels «,-. According to Puckett (1987), the two 
foregoing sheet-creation algorithms show no increase in ac
curacy when the latter, more costly sheet-creation algorithm is 
used. 
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Various accuracy and stability constraints have been pro
posed or imposed on some of the parameters entering into the 
computation (time step At, sheet length 2X, minimum and 
maximum sheet strengths 7min and ymsx, shapes of the 
smoothing and core functions, cutoff distance, etc.). Usually 
At times the maximum U„ is made smaller than the sheet 
length (the so-called "CFL" accuracy condition) in order to 
ensure that sheets move downstream at a rate of no more than 
on grid point per time step. There are a number of additional 
accuracy and stability conditions (see e.g., Puckett, 1987) 
whose "constants" cannot be predicted from a theory but 
have to be chosen to fit in with experiments. 

Hybrid versions of the time-splitting method have been 
developed through the use of the VIC scheme (Stansby and 
Dixon, 1983; Van der Vegt and Huijsmans, 1984; Van der 
Vegt and de Boom, 1985; Vada and Skomedal, 1986; 
Skomedal and Vada, 1987, Van der Vegt, 1988). The diffusion 
introduced by the convection scheme and augmented by the 
random walk is further enhanced by the vortex-in-cell 
algorithm. 

Other users of the random-walk method have introduced a 
set of new discrete vortices at each time step at a distance 
e = ds/ir, with strengths AV = vsds. This method approximate
ly nullifies the slip velocity vs at each At, provided that ds is 
chosen sufficiently small (e.g., ds = ira, a= the core radius). 
The vortices are then convected or both convected and dif
fused sequentially. The vortices which penetrate the body have 
either been reflected or ignored. Yet others have introduced 
vortices in the manner described above only over a segment of 
the body (downstream face of the body between the separation 
points). Clearly, the combinations of schemes are limited only 
by one's imagination and ultimate goal: acquisition of predic
tive power, an approximate solution, or a new insight. 

Most or all of the foregoing schemes share the following 
facts. The number of vortices increases rapidly, the computa
tion of the convection velocity becomes prohibitively expen
sive, the evolution of large local strains increases the blob 
spacing relative to the core radius (local blob population 
depletion) and can lead to large errors in the resolution of the 
vorticity and the velocity field, and the calculations may be 
carried out only for relatively small fluid displacements. The 
use of Maskew's (1973, 1977) "subvortex" (sub-blob, sub-
vorton, or reblobbing) technique or its variations to 
repopulate the depleted areas causes a further blob-population 
explosion. The implementation of the sub-blob scheme, re
quiring another step in the calculations, and the increase of the 
number of blobs, further increase the CPU time. Note that the 
velocity fields before and after reblobbing are not the same in 
the vicinity of the new blobs. In this process, the use of higher 
order core representations (e.g., a fourth order Gaussian core) 
to achieve better accuracy becomes debatable. The calculation 
of forces and pressures requires either special averaging 
techniques or special schemes (e.g., that of Quartapelle and 
Napolitano, 1983) or the use of the simple rate of change of 
impulse expression (see equation (476)). The number of 
physical parameters, ad hoc schemes, programming tricks, 
and convection "fixes" becomes very large, making a 
parametric analysis of their separate as well combined 
nonlinear effects on the predicted results practically impossi
ble, notwithstanding the arguments regarding the 
"robustness" of the algorithms devised. Even the methods us
ing most elaborate schemes and as many as 100,000 blobs re
quire the use of an artificial circulation reduction (circulation 
decay) in order to bring the numerical results into closer agree
ment with those measured (similarity of flow kinematics gives 
only a zeroth order satisfaction). Evidently, vortex models 
became more, not less, cumbersome with the passage of time 
and the increase of computer power. The disciples of vortex 
methods have not yet arrived at simplicity and reliability in 
spite of their best efforts. 

2.9.2 On the Convergence of the Operator Splitting 
Methods. Chorin (1973) was the first to point out that "the 
crucial problem is to assess the effect of the interaction be
tween the random and deterministic parts of the convection"; 
"We do not expect valid solutions at low Re," and "At the 
other extreme, some difficulty may be expected at very high 
Reynolds numbers. This is so because the boundary layers 
formed by the algorithm are made up of a few bouncing vor
tices and are thus noisy; turbulence effects should therefore 
appear at too small a value of Re, as they do, for example, in 
noisy wind tunnels around rough bodies." All applications of 
the operator-splitting method(s) have confronted these valid 
concerns and attempted to overcome them through numerous 
schemes regarding the blob core size (cutoff), vorticity 
distribution (cutoff function), number of overlapping blobs, 
number of random walks per integration step, initial distribu
tion of the blobs, blob depletion in large strain fields, and tur
bulent diffusion. 

Convergence proofs for the method are given by Hald and 
Del Prete (1978), Hald (1979, 1985) and Beale and Majda 
(1982a,b). Roberts (1985) tested the accuracy of the method in 
highly idealized conditions (blobs of equal strength and 
uniform distribution in an unbounded fluid) and concluded 
that the accuracy of the method depends heavily on the initial 
distribution and strength of the blobs. Marchioro and 
Pulvirenti (1982) showed that the method approximates the 
Navier-Stokes equations in a weak sense, as the initial grid size 
and cutoff approach zero in an appropriate way. Goodman 
(1987) showed that the method will, with high probability, 
produce good approximations to the true velocities. Beale and 
Majda (1981, 1985), Anderson and Greengard (1985) and 
Anderson (1986) also discussed errors introduced in time-
splitting, in the approximate solution in Euler equations, in 
the smoothing and in sampling. Anderson and Greengard 
(1985) described two schemes for use in three-dimensional 
vortex modelling; (i) connected-filaments scheme where the 
vortex stretching is determined from the change in filament 
length, and (ii) disconnected-discrete-vortices scheme where 
the change of magnitude of vorticity requires the determina
tion of the local strain. Greengard (1986) gave a convergence 
proof of the connected-filament scheme and Beale (1986), of 
the disconnected-vortices scheme. 

All of the foregoing proofs dealt with laminar flows in the 
absence of boundaries. As noted by Ashurst and Meiburg 
(1988), "The style of these proofs is to bound the errors in the 
discrete velocity versus the exact velocity from a known vor
ticity distribution." "A sufficiently smooth initial distribution 
is assumed, the smoothness determines the time interval in 
which the error estimates are valid." "Stability is shown in the 
sense that sufficiently small errors in the computed motion 
yield bounded errors in velocity." As far as the bluff-body 
flows are concerned, there does not seem to be any proof that 
the random walk method will correctly simulate the behavior 
of flow either in the vicinity of the separation points or in the 
regions depopulated by large strains, or in the regions where 
the flow is turbulent (e.g., the wake of a cylinder at Reynolds 
numbers larger than about 400). None of the proofs dealt with 
the question of what does random walk mean or represent in a 
turbulent wake even though all proofs allude to high-
Reynolds-number flows. In subcritical bluff-body flows, the 
motion is laminar in only a small region, i.e., molecular diffu
sion is confined to the laminar boundary layers near the wall 
from which the whole of the vorticity originally diffuses. The 
region of vorticity generation is the region where the laminar 
diffusion is the predominant process. In regions (the wake of 
body) of varying intensities and scales of turbulence, viscous 
diffusion is unimportant. Consequently, the use of random 
walk throughout the flow does not make sense. 

Most of the convergence proofs are related to specific flow 
examples where the simulations of known solutions and 
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phenomena, e.g., Kelvin-Helmhotz instability of a shear layer, 
wall-driven flow in a rectangular enclosure (Choi et al., 1988), 
flow over a backward-facing step (Ghoniem and Sethian, 
1987; Ghoniem and Cagnon 1987; Sethian and Ghoniem, 
1988) for which there is a wealth of experimental data, are 
used to refine the numerical parameters (a minimum of six 
disposable parameters) and to calibrate the numerical scheme. 
Often, calculations are performed at relatively low Reynolds 
numbers in the laminar regime. Even though only the viscous 
diffusion via random walk is simulated, it is often claimed (or 
implied) that the method is applicable to high Reynolds 
number turbulent flows. The word "turbulent" is taken to 
mean "the instability of small-scale flow and the resulting 
coagulation of vorticity into large fluid structures that comes 
with increasing Reynolds number" (Sethian and Ghoniem, 
1988). According to Simpson (1987), "Most methods do not 
incorporate the correct physics for the backflow region: name
ly, that turbulence diffusion and dissipation control the 
backflow behavior and that the backflow mean velocity pro
file is determined by the large-scale fluctuations which scale on 
the maximum shear stress." [See Amano and Goel (1985, 
1987) for computations of turbulent flow beyond backward-
facing steps using Reynolds-Stress closure models]. 

This is not the proper forum to offer a critical assessment of 
the numerous "convergence proofs." Instead, we will offer 
two quotations which, in our opinion, fairly accurately sum
marize the state of the random walk method. Perlman (1985) 
noted that "The accuracy of the vortex method depends on 
the choice of the cutoff function and of the cutoff length a and 
on the initialization of the vorticity distribution. The best 
value of a is larger than h, the initial distance between the vor
tices; it is time-dependent in the sense that longer time integra
tion requires a larger a" (i.e., stronger diffusion, in a manner 
similiar to that naturally provided by the Lamb-vortex model). 
"In addition, the optimal choice of a is insensitive to the 
smoothness of the flow. If a is close to h, then the accuracy is 
lost in a relatively short time. This loss of accuracy is caused 
by the growth of the discretization error." Perlman (1985) in
vestigated the practical effect of these choices on the vortex 
method for in viscid flows in the absence of boundaries. As 
noted earlier, a does not remain larger than h everywhere at all 
times even if it were so at the start of the calculation. Large 
strains and blob depopulation are an integral part of the 
vortex dynamics. Hald (1986) noted that " . . . if the time step 
is small and if we use a large number of particles, then the er
ror in the computed solution is small—with high probability. 
This does not mean that the error is small in any particular 
"numerical" experiment—only that it is unlikely to be large." 
He also emphasized that "On the other hand, by repeating the 
experiments an increasing number of times, we can construct a 
probability space such that the method diverges almost surely 
(if anything can go wrong, it will eventually)." "The proper 
concept for numerical work is therefore convergence in pro
bability and not convergence almost everywhere." Earlier, 
Milinazzo and Saffman (1977) critically examined the conse
quences of replacing a continuous distribution of vorticity by 
a finite number of discrete vortices of compact support and, 
using a random walk component to simulate the effects of 
viscous diffusion, arrived at essentially the same conclusions. 
They have also shown that the VIC scheme produced com
parable error at a much reduced CPU time. Roberts' (1985) 
revisit of the "circular vortex" problem of Milinazzo and Saf
fman (1977) and Chang's 1988) use of a uniform grid (with on
ly 856 vortices), and a variance reduction technique to reduce 
the sampling errors, did not refute or allay the criticisms re
garding the accuracy of the random vortex schemes. 

Notwithstanding the foregoing idealized proofs and 
arguments, Ng and Choniem (1986) were "surprised to 
discover," in connection with their work on a confined 
spatially-developing shear layer, "the fact that nonoverlap-

ping cores produce accurate results" "since most theoretical 
studies (e.g., Beale and Majda, 1982) indicate that 5 (core 
radius) should be larger than h (the initial distance between the 
vortices)." Ng and Ghoniem's explanation of this finding that 
"the vorticity field in this simulation changes in time and may 
not conform identically with the assumptions of the theory" is 
contrary to Ghoniem and Sherman's (1985) earlier work where 
"vorticity is continuously generated inside the field by the ac
tion of the baroclinic torque, and at the wall by the satisfac
tion of the no-slip condition" and contrary to the proof by 
Hald (1986), establishing the convergence of random methods 
with creation of vorticity and showing that the error is in
dependent of viscosity! 

A few additional facts must be noted. The overlapping 
blobs must be regarded as mathematical artifices (many souls 
in one body!) since vorticity carrying non-deforming fluid par
ticles cannot occupy the same space at the same time (the ex
clusion principle). If the blobs are well separated, the tech
nique is not really necessary since it does not make any dif
ference whether they are blobs or line vortices (of infinite vor
ticity). The simulation of viscous diffusion by random walk is 
based on numerical convenience and it has nothing whatever 
to do with the physical process being simulated. As noted by 
Peters and Thies (1982), "In using the random vortex method 
to simulate large coherent structures there has been uncertain
ty about how to interpret the nature of the diffusion process. 
If the diffusion of vorticity corresponds to the molecular 
transport process, as Chorin (1973) suggests, then a nonsta-
tionary two-dimensional laminar flow field is calculated. The 
number of vortices would then need to be very 
large—representing individual molecules of the system. In 
fact, it has been shown that a very large number of particles is 
needed to solve even the one-dimensional heat conduction 
problem (Peters 1975). If, on the other hand, the diffusion 
process is to be considered turbulent, then the choice of the 
turbulent diffusion coefficient and the turbulent length scale 
distribution are unknown input parameters." This brings one 
back to square one: turbulence modelling. It is also clear that 
the random-walk method does not and cannot prescribe a 
specific Reynolds number. In fact, the Reynolds number 
mimicked in all vortex models is that of the experiments to 
which the numerical predictions are retrofitted or with which 
the numerical schemes are calibrated. Finally, quantities such 
as forces and pressures, important for comparison with ex
periments, can only be obtained by averaging or smoothing 
over several time steps. Instantaneous values may and often 
do exhibit unrealistically large variations. 

As noted above, in order for the random walk method to 
work for the cases to which it may logically be applied, one 
should have many blobs close to each other with overlapping 
cores. It is this requirement that minimizes the effect of 
nonlinearity of the convective acceleration terms (neither a 
single blob nor a linear sum of blobs with compact support is 
an exact solution of the Navier-Stokes equations). It is the 
same requirement that makes the use of the Biot-Savart law 
prohibitively expensive. The schemes devised to overcome this 
difficulty have been described in Sections 2.5.2 (DVIC and 
DIC schemes) and 2.6 (CIC or VIC technique). Note that the 
VIC method does not really require a blob and as noted by 
Chorin (1973) "the alternative methods of solution employ a 
grid, which would destroy the principle of our method." 
Nevertheless, the random walk and the VIC technique have 
been combined in recent years (e.g., Stansby and Dixon 1983) 
to reduce the CPU time. In some applications (e.g., Sethian 
and Ghoniem 1988; Tiemroth 1986) higher order time integra
tion schemes, in lieu of Euler's scheme, have been used, hop
ing that a better solution will result. Puckett (1987) pointed 
out that "one may be doing twice as much work for a negligi
ble gain in accuracy." Since each random step puts into fur
ther disorder the existing state of the vortex jungle, it does not 
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seem to be reasonable to attempt to refine the accuracy of the 
deterministic step even in the regions of high convective veloci
ty (but see Ng and Ghoniem, 1986). 

2.10 Asymmetry Introduction. In classical vortex 
methods, the asymmetry of flow about symmetric bluff bodies 
is induced by means of an artificial perturbation (see, e.g., 
Sarpkaya and Shoaff, 1979a). This is often criticized as a 
shortcoming of these methods, particularly by those using 
random-walk methods (e.g., Spalart, 1982; Spalart and 
Leonard, 1981; Spalart et al., 1983; Tiemroth 1986). It is not 
generally appreciated that in physical experiments the sym
metry is destroyed by the presence of multiple perturbation 
sources and that the numerical experiments with or without 
random walks cannot model the perturbations of nature 
yielding the final asymmetry. The initial conditions are never 
given and are never the same. As noted by Braza et al. (1986), 
"It is beyond the experimental ability of the researcher to con
trol or even recognize all possible contingencies that may arise 
in an experiment designed to study the evolution of the asym
metry. When the flow is in a critical state to become asym
metrical, a very small cause can have a very great effect." The 
random walk cannot simulate a given state of disturbances in a 
given experimental situation. In fact, in all classical vortex 
models, random walk could have been used (for a short time) 
as one of the "artificial perturbation schemes," to induce 
asymmetry, in lieu of others too numerous to describe here. 
This does not settle the question of when will the first Karman 
vortex shed from a circular cylinder. The fact that the "ar
tificial disturbances" of short duration vice permanent ran
dom perturbations lead to the same flow pattern indicates that 
"the periodic character of the flow appearing beyond a critical 
value of the Reynolds number is an intrinsic property of the 
Navier-Stokes equations and does not depend on the nature of 
the perturbations" (Braza et al. 1986). Moreover, the pertur
bations seem only to be responsible for the change of the 
regime from steady to periodic flow, but they are not 
necessary as a source of energy to sustain the periodic flow. In 
short, in praise of automatic asymmetry, the random walk is 
no virtue. The perturbation that provides the shortest 
establishment phase should be chosen to save computer time. 

It is clear from the foregoing that even though some subjec
tive decisions and ad-hoc assumptions are required in the 
selection of the proper values and procedures (the method of 
approximation is what distinguishes the various approaches), 
it is important that the numerical procedure used to implement 
the method is stable, and that the results do not critically de
pend on the magnitude of the disposable parameters intro
duced. The ultimate objective of the simulation via vortex 
dynamics is the acquisition of new insights rather than ac
curate predictions. The flow simulated by the numerical model 
may not be physically realizable even under controlled 
laboratory conditions. 

3 Evolution and Applications of Vortex Methods 

3.1 Contra Flowing Streams. The interface between two 
parallel incompressible streams in shear, i.e., the vortex sheet 
across which the tangential component of velocity is discon
tinuous, has been studied analytically, experimentally, and 
numerically (see, e.g., Ho and Huerre, 1984). The results have 
shown that it is linearly unstable and does degenerate into a 
series of vorticity concentrations (Kelvin-Helmholtz instabili
ty) when exposed to a small disturbance. As noted by Rizzi 
and Engquist (1987), the crests and the troughs of the dis
turbance waves constrict the streamlines ahead of them and 
diverge those behind them. This makes the pressure inside a 
crest or trough larger than that outside. The resulting pressure 
gradients (which are in opposite directions), and moment, 
amplify and twist the initial disturbance waves (see Fig. 7). 

—£2f 
«59 _ -Ug-

Fig. 7 Onset of the Kelvin-Helmholtz instability for two parallel incom
pressible streams in shear (Rizzi and Engquist, 1987) 

Rosenhead (1931), in his pioneering work, introduced a 
discrete vortex approximation to investigate the evolution of a 
sinusoidally perturbed two-dimensional vortex sheet, 
separating two streams of equal density and opposite but 
equal velocity U. He replaced the continuous sheet of vorticity 
by twelve line vortices of strength (C7X/6), distributed 
uniformly along one wavelength of the sinusoidal perturba
tion at intervals of x= X/12. The initial distribution of vortici
ty along the sinusoidally-perturbed sheet was not uniform. His 
hand calculations (over four time steps) clearly demonstrated 
the roll-up process, at least in the initial stages of motion. The 
unavailability of a computer was partly responsible for the en
couraging results. 

Birkhoff and Fisher (1959) repeated Rosenhead's calcula
tions with a computer using twenty-two vortices per 
wavelength and smaller time steps in their Runge-Kutta in
tegration routine. They have demonstrated that the energy in-
variance of a set of line vortices prevents any two vortices 
from getting arbitrarily close to each other. They have con
cluded that the self-induced motion of an array of line vortices 
will ultimately produce randomness of position (i.e., no true 
roll-up is possible) and that viscosity is essential to the smooth 
roll-up of real vortex sheets. This criticism of the vortex model 
underscored the problems to be resolved and gave rise to the 
smoothing schemes discussed earlier. 

Hama and Burke (1960) also repeated Rosenhead's calcula
tions using twelve vortices over a wavelength and sixteen time 
steps instead of the four used by Rosenhead. They arrived at 
essentially the same conclusions as Birkhoff and Fisher's that 
the vortex sheet concentrates into clusters of vorticity in a 
most contorted fashion. Then they spaced the vortices uneven
ly along the disturbed sheet, so as to represent the sheet with 
vortices of equal strength, and obtained smooth roll-up. 

Abernathy and Kronauer (1962) investigated the stability of 
two shear layers (of constant initial strength), between a cen
tral stream of thickness h and velocity + U and two outer 
streams of infinite extent and velocity — U. After showing that 
the said shear layers have two growing and two decaying 
modes, they replaced each layer by discrete vortices and ex
amined their evolution in time for a range of values of \/h be
tween 0.12 and 0.34 where X is the wavelength of the initial 
disturbance (consisting of two asymmetric modes). They 
showed that (i) the vortices form asymmetric clouds, resem
bling a vortex street, (ii) the Karman spacing \/h = 0.28 is the 
smallest ratio for which only two clouds form per wavelength, 
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and (iii) the cloud spacing broadens as in the case of real 
vortex wakes behind bluff-bodies. For Ut/\ larger than about 
0.7, the motion of vortices became random and "there was no 
longer sufficient evidence to suggest the existence of vortex 
sheets." Nevertheless, they were able to demonstrate that the 
net vorticity in each cloud is "diminished by the vorticity 
swept into the cloud by the opposite vortex row." This work, 
while adding further credibility to the use of the discrete vor
tices and elucidating the roll-up mechanism of the shear 
layers, did not deal with a body and the generation of vortici
ty. Thus, the investigation was unable to deal with the conse
quences of nonuniform distribution of vorticity along a grow
ing shear layer. 

Michalke (1963-1965) investigated the instability of a thick 
shear layer, represented by a linear velocity distribution (i.e., 
constant vorticity). Using three and four parallel rows of line 
vortices and different wavenumbers, he was able to show that 
the entire shear layer as well as the individual rows roll up into 
concentrated vortices (tightest for the most unstable 
perturbation). 

Beavers and Wilson (1970), in an effort to understand the 
vortex growth in a two-dimensional jet, studied the rate at 
which local disturbances (as opposed to periodic ones in 
earlier studies) would propagate upstream on two initially 
parallel, oppositely signed, finite length shear layers (finite, 
because of computational constraints). They have, in fact, 
shown that both symmetric and non-symmetric small disturb
ances move upstream relative to the shear layers. 

Zaroodny and Greenberg (1973) analyzed the non-breaking, 
but arbitrarily large amplitude, shallow water waves by 
representing the water surface and the sea bed by continuous 
vortex sheets. Zalosh (1976) used the discrete vortex method to 
study the behavior of an interfacial vortex sheet (e.g., 
oil/water interface) in the presence of gravity and surface ten
sion effects. He calculated the early time-disturbance growth 
rates and the overall form of the interface for disturbance 
amplitudes outside the realm of linear Kelvin-Helmholtz 
stability theory. At late times, the chaotic motion of the in
dividual vortices caused the calculations to break down in the 
sense that the line vortices no longer simulated a continuous 
vortex sheet. Baker et al. (1982) investigated the motion of 
free surfaces in incompressible, irrotational, inviscid layered 
flows through the use of the evolution equations for the posi
tion of the free surfaces and appropriate dipole (vortex) and 
source strengths. The resulting Fredholm integral equations of 
the second kind were solved by iteration in both two and three 
dimensions. The nonlinear interaction between a rising vortex 
pair and a free surface has been investigated by Sarpkaya 
(1986c), Sarpkaya et al. (1988), Tryggvason (1988b), and Mar
cus and Berger (1989). 

The growing awareness of the significance of large scale 
coherent structures in turbulent flows (Brown and Roshko, 
1974; Winant and Browand, 1974; Roshko, 1976; Hussain, 
1986) has led to the suggestion that these structures might play 
a role in the mechanisms responsible for the hydrodynamic 
sound generated in shear flows. However, this is a subject of 
much controversy (Crow and Champagne, 1971; Moore, 
1977; Lau and Fisher, 1975; Crighton, 1975; Hussain, 1986). 
According to Hussain (1986), most of the noise is produced by 
the breakdown of the initial toroidal structures into substruc
tures, via the cut-and-connect mechanism, and their subse
quent interactions. 

Acton (1976) modeled a thick shear layer with several 
parallel rows of discrete vortices, as was done earlier by 
Michalke (1963), but with rigidly-rotating cores such that a 
single coherent structure consisted of a set of many discrete 
vortices. Initially, vortices in each of the waves roll up into 
rotating concentrations which subsequently revolve about 
each other until they coalesce. The behavior reported by Ac
ton is in good qualitative agreement with the pairing descrip

tion of Winant and Browand (1974). Grabowski and Telste 
(1977) represented the shear layer occurring at the interface of 
two streams of different velocity by a large number of discrete 
vortices and obtained results which are in excellent agreement 
with the calculations of Acton (1976) and, as far as the large 
scale evolution of the shear layer is concerned, in qualitative 
agreement with the experimental observations of Winant and 
Browand (1974) (see also Damms and Kuchemann 1974). They 
have also concluded that the small-scale motion (regarded to 
be insignificant in the discrete vortex models) has overwhelm
ing effects on the acoustic predictions and that the role of 
large scale behavior in the generation of hydrodynamic noise 
cannot be elucidated. The last conclusion called for a careful 
scrutiny of the similar hydrodynamic noise predictions by 
Davies et al. (1975), Hardin (1973), and by Hardin and Mason 
(1977). Aref and Siggia (1980) calculated the roll-up of the 
two-dimensional shear layer through the use of the VIC 
method to obtain rms velocities and Reynolds shear stresses, 
which are much larger than the experimental results. Meng 
and Thomson (1978) conducted numerical studies on 
Rayleigh-Taylor instability, the Saffman-Taylor instability, 
trailing vortices in a wind shear, and the gravity currents 
through the use of discrete vortices and compared the results 
obtained with the Biot-Savart law and Rosenhead's (1930) 
smoothing scheme [see equations (24) and (25)] with those 
obtained with the VIC method. 

In the foregoing, the mixing layer was replaced by a time-
developing shear layer. Another approach is to simulate 
directly the spatial growth in a real shear layer (e.g., the tur
bulent mixing layer produced by a splitter plate). Observations 
of such a mixing layer by Brown and Roshko (1974) and by 
Winant and Browand (1974) clearly showed that the mixing 
layer consists of a row of quasi two-dimensional coherent 
structures. The behavior of perturbed free shear layers from 
the coherent-structures point of view is reviewed in detail by 
Ho and Huerre (1984). The two- and three-dimensional in
stability of a temporally growing mixing layer has recently 
been studied by direct numerical integration of the Navier-
Stokes equations by Metcalfe et al. (1987) (see Claus 1986 for 
a pseudospectral approach and Canuto et al. 1987 for a full 
treatment of the spectral methods in fluid dynamics). The im
perfect nature of the analogy between the temporal growth of 
periodic disturbances (often a single monochromatic disturb
ance) and the spatial growth in a real shear layer has been 
discussed by many workers (see, e.g., Aref and Siggia, 1980; 
Aref 1983; Corcos and Sherman 1984). As noted by Pozrikidis 
and Higdon (1985), the restriction of the disturbances to a 
single wavelength explicitly eliminates one of the most impor
tant growth mechanisms, i.e., the possibility of vortex pairing. 

Ashurst (1979) used blobs and the random walk technique 
to simulate the mixing layer. His calculations with blobs of 
constant core radius were not satisfactory. However, his use 
of an exponentially spreading (aging) blob (Lamb vortex) 
showed "dramatically different" results and produced good 
agreement between the measured and calculated Reynolds 
stresses and RMS velocity fluctuations. Ashurst concluded 
that pairing is the primary growth mechanism (see Fig. 8). As 
noted by Saffman and Baker (1979), the effect of diffusion is 
invoked twice and as argued by Greengard (1985), the core 
spreading approximates the wrong equation. It appears that 
Ashurst's model called for an artificial reduction of circula
tion. It would have been interesting to see what would have 
happened without the random walk. Inoue (1985a) has done 
just that by using the Biot-Savart law and Rosenhead's de-
singularization scheme [equation (24)], without citing the lat
ter and calling it the vortex blob method (to which it is akin, 
but not identical). Even though he claimed "reasonably good 
agreement with experiments, at least for a small time step," 
his calculated values are about twice those measured (same as 
Ashurst's fixed core results). Inoue attributed the differences 
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Fig. 8 Simulation of the mixing layer: streakline plots of each discrete 
vortex for a unit time (L/AU) with respect to the average velocity 
(LAUh= 1000) (Ashurst 1979) 

to the "non-negligible three-dimensionality" of the flow and 
to the effect of time step. Furthermore, he concluded that en-
trainment is the main mechanism for the growth of the shear 
layer. Subsequently, Inoue and Leonard (1987) presented an 
improved version of Inoue's earlier work on forced/unforced 
mixing layers. Additional numerical simulations of the shear 
layer are reported by Leonard (1980a), Mclnville et al. (1965), 
Mansour (1985), Ng and Ghoniem (1986) and Ghoniem and 
Ng (1987). Leonard used blobs without random walk; Mcln
ville et al. used a compact finite-difference algorithm; and 
Mansour used the VIC scheme. Ghoniem and Ng used both 
blobs and random walk and concluded, among other things, 
that pairing occurs without entrainment and the individual 
vortices grow by entrainment, i.e., the shear layer grows by 
both mechanisms (agreeing with both Ashurst 1979 and Inoue, 
1985a). The ability of the random walk methods to reproduce 

the intermittent structure of the flow is primarily due to the 
fact that the turbulent viscosity in such flows is more likely to 
be constant (Peters and Thies 1982). According to Townsend 
(1956) the "effective" Reynolds number in free turbulent 
flows is rather invariant and not very high. In other words, the 
flow simulated corresponds to a laminar flow when Re — °o or 
to a turbulent flow with a constant eddy viscosity (a large 
laminar viscosity coefficient). As noted earlier, the Reynolds 
number mimicked in all vortex models is that of the ex
periments to which the numerical predictions are retrofitted or 
with which the numerical scheme is calibrated. Attempts made 
to simulate turbulent boundary layers over bluff bodies 
through the use of a turbulence model (e.g., the zero-equation 
model of Baldwin and Lomax 1978) will be taken up later. 
Suffice it to note that the viscous diffusion through a noisy 
numerical scheme does not represent turbulence but, as noted 
by Chorin (1973), the rough representation of the boundary 
layer (say over a circular cylinder) could trigger a premature 
onset of the drag crisis analogous to the effect of a rough 
boundary or a noisy flow. In any case, one has to remember 
that turbulence is a three-dimensional phenomenon. As noted 
by Cantwell (1981), "Generally, the simulations reproduce the 
large-scale motions in these flows (vortex-sheet roll-up, mixing 
layers, wakes, turbulent spots) remarkably well. However, 
they tend to do less well at simulating the associated stresses. 
At least part of the reason for this appears to be due to the 
neglect of small-scale three-dimensional motions, which con
tribute significantly to the stress." Apparently, the modelling 
of vortical flows by essentially inviscid approaches can pro
vide us with insight into the physics of gross flow structures 
for only relatively simple cases and for the duration of the 
calculations. 

A finite difference calculation of the asymmetric mixing 
through the use of a flux-corrected transport scheme is given 
by Grinstein et al. (1986). Three-dimensional flows are 
discussed in Section 3.4. 

3.2 Vortical Flows in Aerodynamics. Vortex sheets, vor
tices and vortex interactions are the predominant aerodynamic 
features of steady or unsteady, compressible or incompressi
ble, separated or unseparated flow about wings, bodies, or 
their complex and often unconventional configurations. The 
vortex sheet created by and left in the wake of a lifting surface 
of finite span at cruise conditions gives rise to familiar trailing 
vortices. Highly swept wings with sharp leading edges, slender 
bodies, and more complex aircraft configurations at relatively 
high angles of attack lead to extensive regions of vortical flow 
both over and in the wake of the body (known as the high-a 
problem). The flow may be symmetrical or asymmetrical and 
may be accompanied by large scale instabilities (vortex merg
ing, vortex breakdown, multi-cell vortices). The impingement 
of vortices on control surfaces may give rise to severe control 
problems. 

In the course of time, numerous methods of numerical 
simulation of the vortical flows have emerged. These have 
been extensively reviewed during the past ten years by Kandil 
(1979), Polhamus (1979), J. H. B. Smith (1980, 1986), Hoeij-
makers (1983, 1985), and Newsome and Kandil (1987) [see 
also Hussaini and Salas (1985) and the AGARD publications: 
CP-247 1979; AG-252 1980; LS-121 1982; and CP-342 1983]. 
The increasing power of the computer has simplified and im
proved the adaptation and the nature of the models. The 
sharp-edged delta wings and slender bodies have attracted 
most attention, both theoretically and experimentally, 
primarily because of their relative generality and obvious prac
tical importance. A relatively small but important class of 
these flows concerns the wake roll-up structure and the rolled-
up vortices. It is for historical reasons that this problem will be 
discussed here first. Subsequently, a relatively brief summary 
of the basic methods will be described. 
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3.2.1 Vortex Sheet Roll-up and Trailing Vortices. Trailing 
vortices are made of rolled-up vortex sheets. The ultimate ob
jective of the numerical methods discussed in this section is to 
predict the structure of the vortical flow from its inception to 
its final demise. This is still an unsolved problem for it in
volves not only the rolling-up of the vortex sheets but also two 
large scale instabilities (sinusoidal instability and vortex 
bursting) in an environment whose characteristics are difficult 
to quantify. An excellent review of past work on vortex core 
structure is given by Widnall (1975). 

Prandtl (1919) and Betz (1932) predicted that vortex sheets 
behind wings will roll-up towards their tips. Kaden (1931), 
neglecting the mutual interaction between the two tip vortices, 
considered a semi-infinite sheet of vorticity produced by the 
parabolic lift variation that approximates the elliptic variation 
at the edge. He has presented the leading term of an asymp
totic expansion describing the roll-up as a tightly wound spiral 
of infinite length. This spiral is always wound up even at 
t = 0+. Further terms have been calculated by Moore (1975) 
and Guiraud and Zeytounian (1977, 1979). The asymptotic ex
pansion contains unknown parameters which are determined 
by the flow outside the spiral. In particular, the location of the 
spiral is unknown (an advance knowledge of the topology of 
the vortex structure turns out to be an important requirement 
in many cases involving massive separation). Thus, a 
numerical procedure, coupled with some iteration and in
tuitive "feel," is required to fully determine the motion. 

Betz (1932) developed a theory of vortex-sheet roll-up by 
assuming that the flow in the cores is circular, with circulation 
increasing radially outward from the core centroid. Following 
the introduction of an ad hoc assumption regarding the mo
ment of impulse of the vortex sheet, he obtained the core cir
culation distribution for any given span loading. The Betz 
velocity distribution rises to infinity as r/i>o-*0, but Moore 
and Saffman (1973) have shown that viscosity removes the 
singularity. They have also pointed out that the Betz model 
does not conserve kinetic energy. 

Spreiter and Sacks (1951) pioneered one approach to the 
problem by postulating a core vorticity distribution (Rankine 
vortex) with a radial scale as a free parameter, then solving for 
the core radius by equating induced drag to kinetic energy per 
unit length of track after roll-up. This resulted in a core radius 
of rc = 0.0982 b0 with b0 as the initial separation between the 
two columnar trailing vortices. Unlike that of Betz, the 
Spreiter and Sacks model conserves kinetic energy. 

Donaldson et al. (1974) has emphasized that the Rankine 
and Lamb models are drastically in disagreement with the 
vortex core velocities measured behind large aircraft. The 
reason for this is partly due to the fact that the predicted core 
radius is extremely sensitive to the assumption that all the vor
ticity is concentrated in the cores (see also Staufenbiel 1984, 
Higuchi et al. 1987, Arakeri et al. 1988). 

The models of Betz (1932), Kaden (1931), Spreiter and 
Sacks (1951), and the subsequent contributions of Jordan 
(1973), Bilanin and Donaldson (1975), and Rossow (1977), 
which extended the Betz model to determine the maximum 
tangential velocity, do not predict the details of the roll-up 
such as the shape of the sheet, or the circulation contained in 
the tip roll-up region. Furthermore, and even more 
significantly, the modification of the potential flow by viscosi
ty or turbulent mixing and axial velocity is not taken into con
sideration. This modification was first discussed by Squire 
(1954) with the assumptions of an initially concentrated line 
vortex and a constant eddy viscosity (see also Hoffman and 
Joubert 1963; and Phillips, 1981 regarding the effect of tur
bulence). Batchelor (1964) elucidated the role of axial velocity 
in a laminar, initially concentrated line vortex. The effect of 
wing span loading, wing tip shape, angle of attack, axial 
velocities and their direction, ambient turbulence, among 
other variables, are now known to affect the evolution and 

longevity of rolled-up vortex sheets behind a lifting surface 
(see, e.g., Donaldson and Sullivan, 1971; Govindaraju and 
Saffman, 1971; Brown, 1973; Corsiglia et al. 1973; 1976; 
Donaldson and Blanin, 1975; Iversen, 1975; El-Ramly and 
Rainbird, 1977; Saffman, 1974; Moore and Saffman, 1973; 
Shamroth, 1979; Sarpkaya, 1983; Sarpkaya and Daly, 1987). 

3.2.2 Numerical Models. Leaving aside the co-called 
l/2a-method of Bollay (1939) and the leading-edge suction 
analogy of Polhamus (1966) [see Hardy and Fiddes (1988) for 
its latest application to non-planar wings], the existing "fit
ted" vortex models (as opposed to "captured vortex" 
methods that solve the Euler and Navier-Stokes equations) 
may be classified as the "cross-flow or slender-body" models 
and the "three-dimensional flow" models. Their basic 
features are discussed in the following. 

3.2.2.1 Cross-Flow or Slender-Body Models: The dif
ficulties offered by the full treatment of the three-dimensional 
flow may be circumvented by reducing the problem to a two-
dimensional one in successive cross-flow planes. The number 
of the cross-flow planes may even be reduced to one by assum
ing the flow field to be geometrically conical. Methods in this 
category ignore the upstream effect of the trailing edge (for 
subsonic flow), large variations in stream wise direction on 
slender bodies, and the interaction of vortices generated from 
various components of the body. Furthermore, a conical 
geometry does not make a conical flow. The limits of ap
plicability of the slender-body assumption are determined 
from a comparison of the predicted and measured flow 
characteristics with full awareness of the fact that not only the 
limitations noted above but also the facility-related 
phenomena such as freestream turbulence, surface roughness, 
vibration, and tunnel blockage may cause gross differences in 
the flow pattern and large scatter among different 
measurements of the force and moment coefficients and 
pressure distributions. Gad-el-Hak and Blackwelder (1985) 
presented photographic evidence that the vortices on delta 
wings originate as a series of smaller vortices shed from the 
leading edge of the wing. These vortices rotate around each 
other and pair to form larger vortices while simultaneously 
moving downstream. In their experiments (Re ranged from 
1.3 x 104 to 3.5 x 105), the vortices paired at least three times 
before reaching the trailing edge of the wing. What role the tip 
shape, dye introduction scheme and the towing conditions 
played in these observations is unknown (see also Bren-
nenstuhl and Hummel 1987). The different types of flow that 
can occur on the lee-surface of delta wings at supersonic 
speeds is described in great detail by Seshadri and Narayan 
(1988). 

The numerical methods in the category of slender-body 
models consist of simple two-vortex models, first- and higher-
order panel methods with various treatment of the vortex 
core, and the discrete vortex models. 

Two- Vortex Models: The representation of the spiralling 
of the vortex sheets by an inviscid model within the framework 
of the slender-body (quasi-two-dimensional flow) theory was 
first presented by Legendre (1953), Edwards (1954) and Brown 
and Michael (1954) in the problem of a delta wing of conical 
planform, exhibiting leading-edge separation. 

The model consists of two symmetrical concentrated vor
tices connected to the separation points by two feeding sheets 
of vanishingly small vorticity. The net force on the total vortex 
system is rendered globally zero, separately on each side. 
There is then a force on the concentrated vortex [ Joukowski 
force = ipT(W\ -&)] which is balanced by an equal and op
posite force [ipt(^ — f0]

 o n t n e idealized feeding sheet [see 
Fig. 9 for definitions and Rott (1956) and Bryson (1959) for a 
derivation]. This means that the concentrated vortex does not 
lie along a streamline, or in the cross flow, i.e., its velocity is 
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Fig. 9 Definition of the force-free feeding sheet (Bryson, 1959) 

not equal to the local fluid velocity. The relative velocity of the 
vortex with respect to the fluid is directed towards the point of 
origin of the vorticity feeding it. Note that the moment acting 
on each vortex and its feeding sheet is not zero 
[M=pt(£l - f0)2/2]. Furthermore, the two-vortex model ig
nores the effect of the secondary separation (a universal 
feature of real flow over slender wings, see Fig. 10), resulting 
from the adverse pressure gradient in the spanwise direction in 
the region just outboard of the lateral position of the center of 
the primary vortex. Bergeson and Porter (1960) have shown 
that the strength of the secondary vortices relative to that of 
the primary vortices is not negligible and "no mathematical 
treatment which fails to include the effect of secondary vor
tices on the flow field can accurately predict the lift force." 
Experiments show that the extent of the effect of secondary 
separation on pressure distribution is largest for the laminar 
boundary layer and increases with decreasing angle of attack 
and decreasing leading-edge sweep (Hummel 1979, Kjelgaard 
and Sellers III, 1988). Thus, for the two-vortex model to ap
ply, the sweep angle should be sufficiently large and the angle 
of incidence should be large enough to minimize the neglect of 
the secondary (and often tertiary) separation and small 
enough to prevent vortex breakdown. Furthermore, the 
numerical results should be compared with experimental data 
corresponding to a turbulent boundary layer flow (J. H. B. 
Smith, 1968). Recent finite-difference calculations through the 
use of the Euler and Navier-Stokes equations by Rizzi and 
Muller (1988) (see also Rizzi and Purcell, 1987) have shown 
that rounding of the leading edges of a swept delta wing can 
have profound effects on the position and number of separa
tion points and on the occurrence of multiple vortices (see, 
e.g., DeMeis, 1988). Euler equations, even with higher order 
dissipation functions, cannot handle smooth surface separa
tion (see, e.g., Kandil and Chuang, 1988) and require a more 
precise numerical implementation of the surface boundary 
conditions (Raj and Brennan, 1987). The use of artificial 
viscosity in the Euler codes and the physical viscosity in the 
Navier-Stokes equations [including the inevitable artificial 
diffusion of the flow features due to numerical dissipation, 
particularly with low-order integration schemes (Nakamura et 
al., 1982)] do not necessarily lead to similar results, suggesting 
the action of different mechanisms for primary and even 
secondary separation points. The fact that the two types of 
viscosity do not necessarily lead to the same separation points 
over curved surfaces must be kept in mind using the vortex 
methods. 

Vortex characteristics of isolated bodies of revolution have 
been studied extensively, again in the framework of slender 
body theory, with the added predicaments, noted earlier: 
where are the separation lines, what is the rate of shedding of 
vorticity, how does the separating stream surface leave the 
body, what conditions should be satisfied at the separation 

z 

VJS^^C^-Primary Vortex 
Secondary Vortex 

Fig. 10(a) Primary and secondary separations over a delta wing (from 
Hoeijmakers, 1983) 

Fig. 10(b) Total pressure contours and secondary separation (Delta 
wing, AR = 1, M^ =0.3, ReL =0.95 x 106) (Thomas et al., 1987) 

lines(s), what is the relationship between the Kutta condition 
and separation from a smooth surface, etc. 

Bryson (1959) used the two-vortex model to obtain a solu
tion for the nonlinear forces on circular cones (represented by 
a source of increasing strength, i.e., the so-called transpiration 
technique) and cylinders at high angles of attack in the sub
sonic to moderately supersonic velocity range. The assump
tion is that the strength of the primary vortices grows with in
creasing distance downstream in a manner analogous to the 
growth, in time, of the vortices behind a two-dimensional 
cylinder in crossflow, impulsively started from rest. In reality, 
there must be some interaction between axial and cross flows. 
The impulsive flow analogy which assumes independence of 
these components must therefore be regarded as a convenient 
way of approximating the evolution of flow. 

Bryson forced the separation line and the positions of the 
line vortices to be symmetric about the incidence plane. Each 
vortex was connected to the fixed and prescribed separation 
points with a cut of vanishingly small vorticity. A Kutta type 
condition (the tangential component of the cross-flow is zero 
on the body) was invoked at the separation points. The direc
tion of the separation line was thereby calculated to be 30 
degrees from the downstream tangent to the cylinder. In spite 
of its remarkable simplicity, Bryson's analysis predicted the 
normal force at the early stages of motion fairly accurately 
(see Sarpkaya 1966). At later times, vorticity flows back from 
the vortex to the generation point (an unacceptable result) and 
the force drops sharply and unrealistically. However, the most 
remarkable feature of Bryson's model is that it owes its limited 
success to the forced symmetry of the vortices. Davis (1969), 
working with Sarpkaya, recast Bryson's model to remove the 
forced symmetry. The use of initial values (including sym
metric separation points) identical to those of Bryson failed to 
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Fig. 11 Consequences of the removal of the lateral symmetry in 
Bryson's (1959) problem: asymmetric vortex formation (Davis, 1969) 

produce symmetric vortex positions (Fig. 11 is a plot of the 
tabulated data given in Davis's thesis). It was discovered that 
the matrix yielding the rates of change of the strengths and 
positions of the vortices is ill-conditioned and the slightest 
truncation error leads to abnormally large values for T,, r2 , 
Z\, and z2- The unexpected and surprising asymmetry of the 
vortices was not interpreted as an explanation of the sectional 
side force which has since become an important problem (see, 
e.g., Thompson and Morrison 1971; Hall 1987). Rather, it was 
discovered that the two force-balance equations for the 
vortex-cut are the source of the ill-conditioned behavior of the 
matrix yielding the strengths and positions of the two vortices. 
This, in turn, is due to the fact that the moment acting on a 
vortex and its connecting sheet is not zero. In fact, all vortex 
models using the no-force condition on the connecting sheet or 
on the vortex-cut may exhibit similar behavior if formulated 
without forcing artificial symmetry. In other words, imposed 
symmetry can hide computational instability. However, it was 
then (1969), and it is still now, this writer's opinion that the 
vortex asymmetry resulting from the ill-conditioned nature of 
the governing set of equations explains neither the existence 
nor the non-deterministic behavior of the side forces. This is 
not to say that the side force is not a consequence of vortex 
asymmetry, but rather to emphasize that the source of asym
metry resides upstream of the separation points, not in the ill-
conditioned behavior of the approximate equations. 

Kuhn et al. (1971), Dyer et al. (1982) and Fiddes (1985) have 
independently repeated Davis's (1969) calculations, removing 
the assumption of lateral asymmetry but retaining the no-
force condition on the vortex-cut and obtained asymmetric 
vortices. Kuhn et al. found the vortex positions and forces to 
be quite sensitive to the initial asymmetry. Dyer et al. and Fid
des have concluded that the bifurcation of the asymmetric 
positions from the symmetric vortex positions is the explana
tion of the large levels of side force. As noted above, this is not 
believed to be the proper explanation. In fact, a careful multi-
vortex analysis of the impulsively-started flow by Sarpkaya 
and Shoaff (1979a), without resorting to the vortex-cut and 
no-force assumption, did not yield a bifurcation to asym
metric state, at least without introducing an asymmetry in the 
separation points and/or in the shear layers. A similar conclu
sion has been reached by Almosnino (1985) using a non-linear 
vortex-lattice method. A thorough discussion of the forebody 

and missile side forces and the time analogy is given by Hall 
(1987). 

Wardlaw (1974, 1975) extended Bryson's model to the 
calculation of the flow field surrounding an ogive cylinder at 
high angles of attack. In doing so, he relaxed the symmetry 
condition and determined the free parameters inherent to the 
model by a comparison to drag coefficient data on an 
impulsively-started cylinder in cross flow. This model required 
the empirical input of many different parameters. 

The two vortex model has been later extended to apply to 
bodies of elliptic cross section and of cambered longitudinal 
axis by Schindel and Chamberlain (1967) and by Schindel 
(1969). The location of the separation points (lines) are 
estimated independently through the use of experimental 
results, empiricism, or boundary-layer approximation. 

Multi-Discrete-Vortex Models: They have been used to 
simulate the evolution of vortex sheets emanating from the 
leading- or trailing edges of lifting surfaces and from the 
separation lines of axisymmetric bodies (within the framework 
of the slender body assumption). Historically, however, the 
calculation of a smooth vortex sheet roll-up in the wake of a 
finite-span lifting surface (with attached flow at cruise condi
tions) has become a major test case particularly for discrete 
vortex models and a magnificent obsession for the 
aerodynamicist and numerical analyst alike. These investiga
tions dealt primarily with the two-dimensional self-induced 
motion of the vortex sheet in a plane (the so-called "Trefftz-
plane" in wing theory) so far downstream from the lifting sur
face that the bound vorticity produces negligible effect, i.e., 
the three-dimensional steady vortex sheet is considered to be 
two-dimensional and unsteady (see Moore and Saffman 1973 
for a formal justification). 

Westwater (1935) pioneered the application of discrete 
vortex modelling of the motion of a vortex sheet of finite span 
with the variation of vorticity 

o>(x) = 2Ux(a2-x2)-m (46) 

produced by an elliptically loaded wing. The vortex sheet in
tersects the x-y plane in the strip y = 0, -a<x<a, at time 
t = 0. He used ten equistrength line vortices, distributed along 
a semi-span, and obtained an orderly roll up starting at the 
edges. The assumptions inherent to the analysis are valid only 
for lightly loaded wings since the bound vorticity, the effect of 
the semi-infinite array in the direction of upstream infinity, 
and the interaction of the shear layer with the flow around the 
tip are neglected. 

Takami (1964) and Moore (1971) were unable to reproduce 
Westwater's results even though they have used a multi-vortex 
approximation with the help of a computer. The results ex
hibited chaotic motion in the region of the spiral even at the 
early stages of motion due to the propensity of closely spaced 
vortices for rapid mutual orbiting. The amplification of the 
chaotic motion in spite of the increase of the number of vor
tices and the use of more accurate time-integration schemes 
was most disconcerting. Takami also found (through the use 
of other vorticity distributions, including the one produced by 
a wing with cusped tips) that the region of irregular motion is 
not confined to the vicinity of the tips but extends over much 
of the sheet. 

Sacks et al. (1967) simulated the flow about a wing-body 
combination using conformal transformation for the con
figuration geometry and discrete vortices for the leading-edge 
vortex sheet. This did not require a vortex core nor the 
assumption of conical flow. Each new vortex (nascent vortex) 
was placed in the plane of the wing. The predicted forces were 
in reasonable agreement with the measurements even though 
the vortex sheet was quite chaotic. Xieyuan (1985) used a 
similar technique to simulate the flow about double-delta 
wings. The position of the large scale vortex motion agreed 
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with that found experimentally but the motion of the in
dividual vortices was quite disorderly. As it is often the case in 
computational vortex dynamics, the reasonableness of the 
results depends on the criteria of credibility. 

Schwartz (1981) considered the roll-up of the trailing vortex 
sheet produced by a wing of finite span and cusped tips 
through the use of a series expansion in time and found that 
the sheet remains analytic for some time but ultimately 
develops a singularity in the form of an exponential spiral at 
the tips. This problem differs significantly from those discuss
ed above, because the circulation is singular at the tips starting 
from the initial instant. 

Bromilow and Clements (1982) amalgamated clusters of 
vortices in the region of roll-up into a single equivalent vortex 
(an extension of Moore's technique 1974) and subjected the re
maining part of the vortex sheet to repeated rediscretization 
[an extension of Fink and Soh's method (1974), but using the 
cubic spline and a four-point Lagrangian interpolation routine 
to account for the curvature effect]. This prevented vortices 
on the evolving parts of the sheet from becoming too close or 
too distant. They have shown, as did Moore (1974) and Baker 
(1980), that the technique of central vortex amalgamation 
alleviates the effects of the erratic motion of the vortices in the 
compressive parts of the sheet and eliminates the attendant 
problem of propagation of these perturbations along the 
feeding sheets until the time when too few vortices are 
representing the sheet. The combined technique allowed the 
calculation to be taken beyond time limits of the basic discrete 
vortex calculations, as noted earlier by Fink and Soh (1974). 

Clements and Maull (1973) used equistrength discrete vor
tices to investigate the effect of different wing loading 
distributions on the roll-up, hoping that some non-elliptic 
distributions might lead to weaker tip vortices with relatively 
small drag penalties. Their results have shown that minimiz
ing, as much as possible, the high rate of change of T near the 
wing tips would decrease the strength and the rate of roll up of 
the tip vortices with relatively small drag penalties. Chorin and 
Bernard's (1973) calculations with blobs showed that the form 
of the roll-up at the tips matched Kaden's spiral well. 

Siddiqi (1987) used a slightly different smoothing scheme 
without amalgamation in calculating the roll-up of a vortex 
sheet for an elliptically loaded wing. Starting at the tip and us
ing the slope information, he fitted, at each time step, a cubic 
spline to the sheet and redistributed each line vortex into two 
equal vortices when the sheet segment representing the vortex 
stretched beyond a prescribed amount. The basic aim of the 
redistribution (at the expense of increasing the number of vor
tices) was to try to keep the sheet-segment length per line 
vortex approximately constant so as to ensure that each roll-
up turn is represented by an adequate number of vortices even 
as it stretches. He was able to obtain three turns at a time when 
90 percent of the circulation has rolled up. Cheng et al. (1985, 
1988) used discrete vortices to calculate the vortical flow over 
a slender delta wing with leading edge flaps. The algorithms 
were similar to those of Sarpkaya (1975) with the exception 
that the strength and location of the nascent vortices were 
determined from the "no-net-force condition" (Edwards 
1954, Bryson 1959). Cheng et al. found that, apart from the 
flap-generated vortices, the secondary eddies produced at the 
hinge also contribute noticeably to the vortex lift even at 
moderate angles of attack. 

Two-dimensional multi-vortex models were also applied to 
separated flow over axisymmetric and arbitrary cross sectional 
bodies at angle of attack. Angelucci (1971, 1973) extended 
Sacks et al.'s (1967) model through the use of numerous ad 
hoc assumptions. Separation lines were assumed to be known 
and only symmetrical separation was treated through the use 
of the impulsive flow analogy. The multi-vortex model was ex
tended and considerably improved by Marshall and Deffen-
baugh (1975), Wardlaw (1975), Deffenbaugh and Koerner 

(1977), and Shivananda and Oberkampf (1981). Peace (1983) 
used the multi-vortex model to calculate the leading edge 
vortex flows on slender wings with lengthwise camber or with 
a strake. He used the amalgamated line vortex, vortex-cut, 
and no-force assumptions together and imposed symmetry. 
Flow about general slender planforms and wings with 
thickness was calculated by Maskew and Rao (1982) and by 
Nathman (1984) using a low-order panel method to represent 
the solid surface and an improved discrete vortex method to 
simulate the vortex sheet. 

Clearly, an infinite sheet comprised of equisign, 
equistrength, and equispaced vortices remains stationary. 
However, a sheet of finite length, comprised of the same type 
of vortices, cannot remain stationary because the velocity in
duced in the vortices, particularly in the one at the edge of the 
sheet, is no longer balanced, out. The singular nature of the 
vorticity distribution at the tip gives rise to a small "hook" at 
the very tip of the sheet at small times. At later times this in
itial irregularity is strained by the velocity field into a larger 
reverse hook in the vortex core. The propensity for mutual or
biting of the vortices is dependent on the relative strengths, 
positions, and core shapes of the vortices situated on either 
side of any given vortex in the sheet. Thus, the mutual orbiting 
of the vortices and the meandering of the edge of the vortex 
sheet in an otherwise inviscid environment are at the heart of 
the problem. These facts may well have discouraged, if not put 
an end to, the further use of the discrete vortex modeling of 
the vortex sheets. But the challenge to obtain a smooth roll-up 
through line-vortex discretization of a thin shear layer proved 
to be seductive and the rush was on to discover or rediscover 
suitable smoothing techniques, discussed in Section 2.5. As far 
as the Trefftz-plane problem is concerned, Krasny's (1987) use 
of Rosenhead's (1930) smoothing technique produced some of 
the best roll-up result to date, (see Fig. 12). 

Segment or Panel Methods. The purpose of these methods 
is to account for the finite vorticity in the outer feeding sheet, 
connected to an isolated potential vortex representing the in
ner part (Mangier and Smith 1959). The vortex sheet is divided 
into a number of straight or curved segments and the vorticity 
or doublet distribution on them is approximated by piecewise 
polynomial representations. The tightly rolled-up inner region 
of the spiral is represented by an isolated vortex. It is con
nected to the remainder of the sheet with a force-free cut. 
Often the sheet is resegmented through the use of a suitable 
scheme to keep the segment length below a prescribed value . 
J. H. B. Smith (1966, 1968) used a large number of small con
centrated vortices at arbitrarily chosen points on in (the 
unknowns being the polar distances of the sheet segments, the 
values representing the sheet strengths, and the strength of the 
isolated vortex and its two coordinates). He used the Kutta-
Joukowski condition of finite velocity at the leading edge, the 
no-force condition on the vortex-cut combination, the no-
pressure difference condition across the sheet, and the conical 
normal velocity condition on the sheet and solved the resulting 
equations through an iterative approach. The predicted 
pressure distributions compared quite well with those obtained 
experimentally, except near the trailing edge where the flow 
must eventually return to the freestream pressure. The com
parison of the results of the Brown and Michael model with 
those of Mangier and Smith (1959), Smith (1968), and Barsby 
(1972, 1973) shows the importance of the correct representa
tion of the outer sheet as far as the position of the concen
trated vortex, the fraction of the circulation in the sheet (about 
50 percent), and the total circulation are concerned. However, 
Smith's model overpredicts, by a considerable amount, the 
load distribution towards the trailing edge, for the Kutta con
dition cannot be satisfied there by the conical theory. 

The use of a line vortex to represent the core gives rise to a 
logarithmic singularity in all the models cited above. Roy 
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Fig. 12 Vortex sheet roll-up in the Trefftz plane at different times 
(5 = 0.2) (Krasny, 1987). The vortex blob positions are plotted on the left 
and an interpolating curve Is plotted on the right. 

(1957) suggested, as did Spreiter and Sacks (1951) earlier, that 
a finite core of vorticity be used to replace the end of the spiral 
sheet in order to limit the velocity (this idea has later been in
dependently discovered by several others and used successfully 
to achieve a smooth roll-up). The Mangier and Smith model 
has been extended to non-conical planforms by Clark (1976). 

Pullin (1973, 1978-1979) and Pullin and Perry (1980) used a 
method similar to that of Smith (1968). The difference is in the 
treatment of the governing integro-differential equation, the 
specification of the percent of vorticity in the sheet (instead of 
the extent of the sheet), and the initial approximation to com
mence the iteration (see Fig. 13). 

A complete description of the panel method is presented by 
Maskew (1980). The perturbation potential is expressed as a 
sum of the potentials induced by singularity distributions on 
the surface of the body. The surface is discretized into a set of 
planar panels, each associated with a prescribed form of 
source and doublet singularity distribution. The resulting set 
of linear equations for the unknown singularity strengths are 
solved by the application of suitable boundary conditions. 

Higher-order panel methods based on the slender-body ap
proximation were developed by Hoeijmakers et al. (1983) and 
by Hoeijmakers (1984) for conical and quasiconical flow (see 
also Nagati et al. 1987). In general, the panel methods produce 
smoother vortex sheets than the discrete vortex models of 
Maskew and Rao (1982) and Fink and Soh (1974). Boundary-
layer calculations have been incorporated into the analysis 
through an iterative inviscid-viscid procedure in order to ac
count for the effect of secondary separation on the upper sur
face pressure distribution (De Bruin 1984; Wai et al. 1985; De-
Jarnette and Woodson 1984). 

The numerical simulation of the formation and roll-up of 
the tip vortex in both subsonic and transonic flows through 
the use of a multi-block zonal algorithm which Solves the thin-

Fig. 13 An example of unsteady self-similar roll-up of a vortex sheet 
(Pullin, 1978) 

PART OF A BODY, DIVIDED INTO 
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SEPARATION 
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TRAILING 
VORTICES CELL SURFACE 

Fig. 14 Vortex-lattice method: (a) vortex-wake shedding and roll-up se
quence over a delta wing (Katz, 1984); (b) subsonic flow on a slender 
body (Almosnino, 1985) 

layer Navier-Stokes and the Euler equations is presented by 
Srinivasan et al. (1986). 

3.2.2.2 Three-Dimensional Aerodynamic Flow 
Models. A number of fully three-dimensional flow models 
have been developed for the prediction of wake roll-up to 
overcome the limitations of the slender body models. These 
consist of non-linear vortex lattice methods and panel 
methods. 

Vortex-Lattice Models: Belotserkovskii (1968) introduced 
the idea of approximating the bound-vortex sheet by a bound-
vortex lattice and the free-vortex sheets by a set of segmented 
free-vortex lines (in the case of steady flow) or by a growing 
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Fig. 15 Boeing free-vortex-sheet model (Johnson et al., 1980) 

free-vortex lattice (in the case of unsteady flow). Each element 
is associated with a horse-shoe vortex. Discrete line vortices 
trail to infinity downstream along the trailing and side edges 
(see Fig. 14). Their alignment with the local flow direction 
provides the necessary boundary conditions on the vortex 
sheets. The strengths of the vortices are determined through 
the use of an iterative technique by imposing the zero normal 
velocity condition at the midpoint of the 3/4-chord line of the 
elements. The model has been considerably improved and ex
tensively used since its inception (Rehbach 1973, 1977, 1978; 
Kandil 1979, 1985; Aparinov et al. 1976; Kandil et al., 1976a, 
1976b, 1984; Belotserkovskii and Nisht 1974; Asfar et al. 
1979; Rom et al. 1981; Almosnino and Rom 1983; Katz 1981, 
1984; Thrasher 1982; Almosnino 1985). The results have 
shown that the model is rather crude and exhibits undesirable 
singular behavior (see, e.g., Schroder 1980). Even though 
overall forces are predicted reasonably well, the local velocity 
or pressure distribution on the body and the vortex-sheet 
geometry are not sufficiently accurate. This is an inherent 
limitation of the vortex lattice method. Increasing the number 
of vortices makes the matters worse (Rusak et al. 1983). The 
results strongly suggest that great care must be taken in 
deciding the position of separation lines, panel arrangement 
and control point placement (see, e.g., Van Tuyl 1988). The 
separation line must be known a priori either through experi
ment, correlation, or by a boundary-layer solution coupled 
with the inviscid solution. 

Panel Methods. The model consists of the wing surface, 
the leading-edge vortex sheet, the feeding sheet, the near 
wake, and the trailing wake. Vortex sheets consisting of small 
panels or vortex elements are inserted into the flow and allow
ed to roll up under their own influence for several turns. The 
remaining core is modeled by an isolated line vortex. The posi
tion and strength of the vortex sheets and isolated vortices are 
determined as part of the solution. The vortex sheets are 
modelled by piecewise continuous doublet distributions, 
eliminating the consequences of the singular behavior of the 
line vortices (see Fig. 15). The most prominent among the 
higher-order panel methods are the Boeing LEV-Model by 
Johnson et al. (1980); the VORSEP-Model of NLR (National 
Aerospace Lab of The Netherlands) by Hoeij makers and Ben-
nekers (1979), Hoeijmakers et al. (1983), and Hoeijmakers 
(1985); and the Hybrid vortex model of Kandil (1980). The 
LEV and VORSEP models are quite similar, differing only in 
their numerical implemenation. Their predictions compare 
favorably well, differing only in detail. The comparison with 
experiments is good to encouraging as far as the overall ac
curacy of the position of the vortices is concerned. The local 
accuracy depends on the shape of the wing, the angle of at-
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Fig. 16 Examples of double-branched vortex wake at 1.067 half spans 
behind a delta wing with AH = 1 at a = 20 deg. (A): (Hummel, 1979); (B): 
Hoeijmakers, 1983); and (C): (Kandil, 1980). 

tack, the number of panels, the order of accuracy of the finite 
difference expressions used to calculate the derivatives, and 
the smoothing applied. The calculated pressure distributions 
compare reasonably well with those measured (Hummel and 
Redeker 1972) on wings with turbulent boundary layers, for 
which the effect of the secondary separation is relatively small. 

In the nonlinear Hybrid model of Kandil et al. (1984), 
vortex panels (triangular panels in the wake) with a first-order 
vorticity distribution are used in the near -field calculations. In 
the far-field calculations, the distributed vorticity over each 
far-field panel is lumped into equivalent concentrated vortex 
lines. This method has been modified by Yeh and Plotkin 
(1986) and applied to large aspect ratio wings with a closer 
look at the trailing wake roll-up. 

Experiments (Hummel 1979, Elle and Jones 1961, Hummel 
and Redeker 1972, Hummel 1979) have shown that the sense 
of roll of the shear layer emanating from the trailing edge of a 
wing, with highly swept-back leading edge, is opposite to that 
of the primary shear layer, i.e., they form a double-branched 
vortex (see Fig. 16). Even though the downstream develop
ment of the interaction of these two shear layers remains to be 
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resolved, the panel methods cited above predict, with varying 
degrees of detail, the form of the double-branched vortex. 

None of the methods is capable of predicting the occurrence 
of vortex breakdown or dealing with high-enough angles of at
tack at which vortex breakdown occurs. It is equally impor
tant to note that the models discussed so far deal only with 
steady or quasi-steady situations. The vortex breakdown is 
quite sensitive to the sweep angle of the wing and is responsi
ble for aerodynamic hysteresis effects. These lead to a double-
valued behavior of the steady-state aerodynamic response to 
variations in one of the motion variables such as angle of at
tack (Orlik-Ruckemann 1982). In summary, the high-a 
aerodynamics involves, by its very nature, highly complex 
unsteady phenomena and the existing vortex methods, 
however elegant, cannot yet deal with them. Their refinement 
will require additional physics to deal with the interaction of 
vortices with other components of the aircraft and with the 
transient behavior of vortices in adverse pressure gradients. In 
recent years, finite-difference analysis of Euler and Navier-
Stokes equations (see, e.g., Eriksson and Rizzi 1981), Rizzi 
and Eriksson 1985, Rizzetta and Shang 1986, and Rizzi and 
Muller 1988) has made great strides towards the analysis of 
separated flow about lifting bodies. However, neither the 
Euler nor the Navier-Stokes codes can capture a sharp vortici-
ty discontinuity without smearing it over a number of com
putational cells in spite of the successive stepwise refinement 
of the numerical parameters. In this case the mismatch bet
ween model-based prediction and actual behavior is wholly at
tributable to numerical diffusion (the bete noire of the grid-
dependent computational approaches). Thus, the computed 
vortical-flow region occupies a larger volume than that enclos
ed by the actual vortex sheet. Even though the details of the 
smeared flow are not correct, the centroids of vorticity remain 
reasonably unaffected (Rizzi 1988) because of the radial 
nature of the diffusion. Nevertheless, the Euler programs are 
not likely to supplant the vortex methods on the grounds of 
either the physical realism or the economy of computation as 
far as subsonic flows with sharp vorticity discontinuities are 
involved. The emerging fact is that the vortex methods are not 
better equipped to deal with stability, smoothing, dissipation, 
dispersion, and turbulence than finite-difference and finite-
volume methods. Arguments to the contrary are presented by 
Hitzel (1988). 

3.3 Separated Flow About Cylindrical Bluff Bodies. 
Observations, as well as numerical experiments, show that the 
wake of a bluff body is comprised of an alternating vortex 
street (ignoring for the time being the effect of splitter plates 
and the proximity of other bodies or boundaries). The 
character of the vortices immediately behind the body and in 
the wake further downstream depend on the Reynold number, 
condition of the body surface (smooth or rough), and the in
tensity and length-scale of the turbulence in the ambient flow. 
For a time-dependent flow, the instantaneous state as well as 
the past history of the flow play significant roles and it is not 
possible to give a general set of normalized parameters. Not 
only the numerical experiments but also the physical ex
periments with time-dependent flows are extremely difficult. 
In this sense, the purpose of computational methods with vor
tices is to provide numerical simulations whose predicitions 
can either be confirmed with physical experiments yet to be 
conducted or relied upon as physically realizable even when 
the experimentation is nearly impossible. The said purpose 
certainly is not the retrofitting of the predictions to the ex
isting data through the manipulation of a number of 
disposable parameters, and the use of ad hoc assumptions, 
even though this is often done to calibrate the numerical 
scheme to perform numerical experiments within a narrow 
range of the governing and influencing parameters. 

3.3.1 Flow About a Circular Cylinder. A great deal of 
theoretical, experimental and numerical research has been 
devoted to the understanding of the near and far wake of bluff 
bodies, in general, and of a circular cylinder in particular. The 
impetus for this research comes partly from practical needs 
and partly from a desire to understand phenomena such as 
separation, transition, shear layer evolution, wake in
stabilities, and fluid-structure interactions. Exciting new 
phenomenological and structural discoveries continue to be 
made both numerically and experimentally (see, e.g., Cantwell 
1976; Schewe 1986; Braza et al. 1986; Sreenivasan et al. 1987). 

Much interest has been given to the unsteady boundary 
layer development around an impulsively started cylinder. 
Telionis (1979) found that the unsteady classical boundary-
layer solution develops a singularity within a finite time, im
plying the nonexistence of a steady classical solution (see also 
Van Dommelen 1981). The formation of this singularity has 
been confirmed by Cowley (1983), Van Dommelen and Shen 
(1983), Ingham (1984), and Henkes and Veldman (1987). 

Sarpkaya (1963) was the first to derive general expressions 
for the lift and drag coefficients for a circular cylinder im
mersed in a time-dependent flow comprised of the ambient 
flow, a doublet, any number of discrete vortices and their im
ages. He included an image at the center of the circle which 
was later omitted (Sarpkaya 1968b, 1969) because of the fact 
that the shed vortices leave a circulation opposite to their own 
on the body, as pointed out by Gerrard (1967). The complex 
force is given by 

n 

D + iL = 2irpc2 U-ipJ^ ry [ ("y + ivj) ~ ("y/ + ivjd 3 (47fir) 
y=i 

or by 

D + iL = 2 , rp C
2 U-i P — £ Tj (zj — — ) (47ft) 

<" y=i x Zj ' 

in which r , is taken positive in the clockwise direction. 
(uj + ivj) is the complex velocity of they'th real vortex, («,,- + iv_ 
ji) is the complex velocity of the y'th image vortex, and c is the 
radius of the circle. Equations (47«) and (47ft) may be easily 
generalized to cylinders of arbitrary shape. Since 1963, they 
have been rederived numerous times (see, e.g., Tiemroth 
1986a). 

Gerrard (1967) was the first to apply the discrete vortex 
model to the flow about a circular cylinder. He noted that "A 
particularly important part of the vortex model of the flow 
and the most difficult aspect of the design of the model, is the 
positioning of the points of appearance of the elementary vor
tices representing the vortex sheets and the determination of 
their strength." Gerrard also recognized the importance of 
simulating the effect of Reynolds number. In fact, even after 
twenty years of work with ever-increasing computer power, 
the problem of relating the creation and diffusion of vorticity 
to a Reynolds number without an abundant dose of disposable 
parameters still remains unresolved. Gerrard used the width of 
the formation region at a control surface (a surface at x=R at 
which the nascent vortices are introduced into the flow) as the 
major scale effect. The strength of the nascent vortices was 
determined from the velocity at the point of introduction. In 
doing so, however, he introduced a disposable time parameter 
characterizing the oscillations of the wake width and ignored 
the effect of the shear layer upstream of the control surface. 
He obtained a relatively crude vortex street and lift and drag 
force traces. Nevertheless, Gerrard's work has pointed out all 
of the major difficulties to be faced by future investigators. 

The cylinder problem was taken up by Sarpkaya (1968b) 
and by Bellamy-Knights (1967), working with Sarpkaya. The 
vortices were introduced half-way between the points at which 
the absolute velocity reached a maximum on the front and rear 
faces of the cylinder. The nascent vortices were introduced at 
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the separation points and a small distance from the cylinder 
surface. The strength of the nascent vortices was made equal 
to 0.5(Vj - V}) At to account for the oppositely-signed vortici-
ty contributed to the shear layer by the reverse flow on the rear 
face of the cylinder. This was the first time that the effect of 
rear separation or secondary separation was incorporated into 
a discrete vortex model. The flow was forced to remain sym
metric and represented by vortices fewer than 100. In spite of 
these limitations, the results showed the rolling-up of the vor
tices, the development of the Helmholtz instability [as ex
perimentally observed by Pierce (1961), and by many others 
since then], and the rise of the drag coefficient to a maximum 
at the early stages of the flow due to the rapid accumulation of 
vorticity in the growing vortices. 

Sarpkaya's work was extended by Davis (1969), working 
with Sarpkaya, to include the evolution of asymmetric flow. 
He developed two models: the two-vortex model (discussed 
earlier) and the multi-vortex model. The second model showed 
periodic vortex shedding behavior and the computed drag ex
hibited realistic behavior in reaching a maximum soon after 
the impulsive start, then decreasing somewhat, and oscillating 
about a mean level. The computer of the day limited the 
calculations to short times and the Strouhal number was not 
predicted. However, Davis's work clearly pointed out the need 
for the use of a boundary layer, the importance of a systematic 
sensitivity analysis, and the critical importance of the strength 
and position of the nascent vortices. Exploratory models were 
described by Laird (1971) and Chaplin (1973). Both authors 
fixed the separation points and the strength of the nascent vor
tices. Chaplin's work, even though quite approximate, had 
two novel features which are worth emphasizing in light of the 
more recent developments: the representation of the forebody 
boundary layer by a number of vortices (placed on an arc of 
fixed radius) and the use of Rankine vortices (with a core 
radius of 0.1), a method independently discovered by others 
since Spreiter and Sacks (1951). Yang and Bar-Lev (1976) used 
two symmetrically situated vortices (Bryson's model 1959) to 
study the initial phase of the impulsively-started flow about a 
cylinder. Even though some of their assumptions are 
untenable, they were the first to use a boundary layer expan
sion in powers of elapsed time, valid for small time, to deter
mine the position of the separation points. 

Chorin (1973) applied his time-splitting method to flow past 
a circular cylinder. His time-averaged drag coefficients (with 
expected substantial variance in the instantaneous values) were 
close to the experimental values. At Re= 105, the drag coeffi
cient was Cd = 0.29. He conjectured "that the rough represen
tation of the boundary layer triggers a premature onset of the 
drag crisis, analogous to the effect of a rough boundary or a 
noisy flow." No Strouhal number was reported. 

Kuwahara (1978) divided the boundary into 64 partitions to 
start the calculations and replaced each with a line vortex with 
the same circulation as the corresponding partition. The vor
tices were introduced at a small distance from the surface (ap
proximately half the boundary layer thickness, not sheet layer 
as in random walk methods). In subsequent steps, only two 
nascent vortices were placed at fixed separation points. His 
calculated drag coefficient for Re= 10,000 and nascent vortex 
angle of ± 90 degrees was about half that found experimental
ly. He then claimed that the position of the nascent vortex is 
not essential. 

Marshall and Deffenbaugh (1975) developed a model to 
determine the forces and moment on a body of revolution in 
separated flow. The model is based on cross flow analogy, an 
expanding (or contracting) cylinder with a time-varying 
radius, a vortex core with fixed cut off distance, the unsteady 
Navier-Stokes equations for the position of the primary 
separation points, and rear shear layer separation with an ad 
hoc assumption. Their calculated forces, moments, and 
separation regions compared well with those obtained ex

perimentally for moderate angles of attack [see also Deffen
baugh and Koerner (1977), where Stratford's (1957, 1959) 
separation criterion is used]. 

Sarpkaya and Shoaff (1979a, 1979b) have presented a 
method for determining the flow over a stationary and 
transversely-oscillating circular cylinder using the method of 
Fink and Soh (1974) to rediscretize the vortices along a vortex 
sheet at each time. The attachment points of the sheets to the 
cylinder are the separation points as determined through 
boundary layer calculations. They have introduced the idea of 
circulation reduction to account for the effects of three-
dimensionality of the flow and were able to obtain results in 
good agreement with experiments through the use of a suitable 
circulation-reduction scheme. The calculated forces without 
the circulation reduction were about 25 percent larger. The 
Strouhal number was essentially unaffected by the circulation 
reduction. Surprisingly enough, ten years later, more 
sophisticated and elaborate methods, based on random walk 
and cloud-in-cell schemes, using as many as 32,000 vortices 
and super computers were unable to reproduce the early stages 
of the drag force with equal accuracy (see Fig. 17). 

Vortex calculations based on the assumption of two-
dimensional flow do not accurately predict the dynamics of 
the flow (in particular, the lift and drag forces, and the 
pressure distribution). This is in part due to the fact that they 
lack the ability to capture small-scale turbulence structures 
which arise due to vortex stretching and tilting with respect to 
the main flow plane. This is true whether one uses a traditional 
vortex model or one with random walks, blobs, etc. Again as 
noted, an artificial reduction in circulation is introduced to ac
count for the three-dimensionality effects, assuming that the 
discrepancy between the calculated and measured quantities is 
due to the neglect of three-dimensional effects alone. Obvious-

2.0 

. Discrete Vortex Model 
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Fig. 17(a) Evolution of drag on a circular cylinder immersed in an 
impulsively-started steady flow (Sarpkaya and Shoaff, 1979a) (discrete 
vortex model with circulation reduction) 
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Fig. 17(b) Same as Fig. 17(a) except that the numerical model has no 
circulation reduction 
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ly, it tends to account for all other ad hoc assumptions 
regardless of the method used. 

Deffenbaugh and Shivananda (1980) carried out two 
distinct studies. First, they extended their previous work (Mar
shall and Deffenbaugh, 1974) to flow about an impulsively 
started cylinder in a slightly compressible flow. Second, they 
reconsidered the earlier impulsive flow case in an incompressi
ble fluid with the addition of random walk component to 
velocity of the vortices. Their use of the random walk differs 
from that of Chorin (1973) and Cheer (1979) in the form of the 
core velocity distribution and in the introduction of the vor
tices. The nascent vortices were placed near the separation 
points, calculated either through the solution of the unsteady 
boundary-layer equations using an integral momentum ap
proach or by approximating the steady solution using Strat
ford's (1957) method. Rear shear layer separation is deter
mined by an ad hoc algorithm based on the assumption that 
the rear shear layers remain attached over the same fraction of 
a region of adverse pressure gradient as the forward boundary 
layers (for details see Deffenbaugh and Marshall 1976 and 
Deffenbaugh 1979). The separation angles for the turbulent 
case were determined using Stratford's (1959) (see also Takada 
1975) turbulent separation citeria immediately after separation 
occurred at the rear stagnation point. The lift and drag coeffi
cients were calculated using a form of the generalized Blasius 
theorem (Sarpkaya 1963, 1968b). Their results have shown 
that the effect of including a random walk component of 
velocity to the motion of the discrete vortices is difficult to 
discern. The predicted lift and drag coefficients were con
siderably higher than the corresponding experimental values 
(Sarpkaya, 1978b) and continued to increase with time. They 
have also concluded that the circulation must be reduced to 
achieve results which agree with experiment and the reduction 
mechanisms must be more accurately modeled. 

Cheer (1983a) applied the combined sheet-blob algorithm 
first to flow over a circular cylinder and over airfoils at 
various angles of attack (with incorrect circulation at infinity) 
and then correctly to the initial stages of impulsively-started 
flow over a cylinder (Cheer, 1983b). Her flow structures for 
very small times were quite similar to those photographed by 
Bouard and Coutanceau (1980). This is not too surprising 
since the classical multi-vortex models with rear separation 
yield similar flow patterns (Mostafa, 1987). 

Faltinsen and Pettersen (1982, 1987) and Pettersen and 
Faltinsen (1983) used a vortex tracking scheme in which 
sources and dipoles were distributed over boundaries and free 
shear layers. The boundary value problem (Fredholm's in
tegral equation of the second kind and the constraint on the 
velocity jump at the separation points) for the velocity poten
tial was solved at each time step. For the flow about bluff 
bodies, a boundary layer calculation (based on an assumed 
eddy-viscosity formulation) was performed to predict the 
separation points. The shear layers were fed at the separation 
points and rediscretized, after every Eulerian-convection step, 
using Fink and Soh's method. The potential jump at the new 
segment ends were found by a linear interpolation. Faltinsen 
and Pettersen (1987) encountered considerable difficulties 
with the prediction of the primary and secondary separation 
points and with the vorticity returning to the body in 
oscillating flows and had to introduce various ad hoc schemes 
(e.g., reduction of vorticity in the primary and secondary 
shear layers by 10 percent. They have applied their method to 
impulsively-started flow about a smooth cylinder and ob
tained satisfactory drag coefficients and Strouhal numbers for 
both subcritical and transcritical flow. They have also applied 
the vortex tracking method to flow past a ship section and to 
sinusoidally oscillating flow about a normal plate and a cir
cular cylinder (separation points fixed at 0S=±9O deg). 
However, only the kinematics of these flows were calculated 
for short times. In treating the problem of vortex-sheet roll-

up, Faltinsen and Pettersen (1982) again used Fink and Soh's 
(1974) rediscretization technique and Moore's (1975) core 
amalgamation scheme. As noted earlier, the combination of 
these two schemes delays the instabilities in the roll-up 
process. 

Stansby and Dixon (1982) used the CIC scheme to em
phasize the importance of secondary shedding in two dimen
sional wake formation at high-Reynolds-number flow about a 
cylinder. They placed the primary separation point at 
downstream of the velocity maximum, at the point where 
C/=0.95C/max for the subcritical flow and at 0.82 £/max for the 
supercritical flow. These brought the measured and calculated 
separation angles into closer agreement. The secondary 
separation points were placed at points where the maximum 
velocity occurred on the afterbody. They concluded that the 
inclusion of the secondary separation brings the pressure 
distributions and vorticity structures as subcritical and super
critical Reynolds numbers into good agreement with experi
ment. Evidently, the agreement achieved is strongly dependent 
on the particular velocity ratios used to calculate the separa
tion points. Furthermore, the importance of the secondary 
separation depends on the shape of the afterbody. In some 
cases the downstream vorticity production is quite small due 
to the nearly flat pressure distribution there (Achenbach 
1972). 

Smith (1986) and Smith and Stansby (1985, 1987) calculated 
a number of flows (laminar boundary layer above an infinite 
plane surface, induced by sinusoidal onset flow and by linear 
waves; separated laminar flow induced by sinusoidal waves 
over a rippled bed; and steady flow over cylinders of arbitrary 
shape for Re= 1,000) using vortex sheets, random walk, and 
the VIC scheme. Attached flows were simulated successfully. 
However, the separated flow cases required the use of a 
"suitably chosen decay factor" (circulation reduction) to 
bring the results into agreement with experiment, even under 
conditions in which the flow was purely laminar. As usual, the 
three-dimensionality effects have been invoked to justify the 
use of a circulation decay law. 

Rottman et al. (1987) studied the two-dimensional motion 
of a fluid cylinder released from rest into a uniform ambient 
flow. The inviscid case was considered first, using analytical 
methods for small and large times and three numerical 
methods (Vortex-sheet, vortex blob, and the VIC method), 
followed by the viscous case, using the VIC method with ran
dom walks (Re = 484). Among other things, they have found 
that the drag of the cylinder is overestimated by about 15 per
cent (the base pressure is underpredicted), and that the results 
computed with Re = 250 nd 484 are virtually identical, while 
the experiments (Thom 1933) show significant differences. 
Apparently, the random walk method (with or without the 
VIC scheme) failed to correctly represent the effect of the 
molecular diffusion, particularly at such low Reynolds 
numbers. 

Kimura and Tsutahara (1987) calculated the flow about a 
rotating circular cylinder using discrete vortices with 
experimentally-determined fixed separation points. They were 
primarily interested with the reverse Magnus effect. 

Applications of discrete vortex models to oscillating flow 
(U=Umsm 2-Kt/T) about bluff bodies have had either gross 
simplifications, or have met with various difficulties. Ward 
and Dalton (1969) considered only symmetric flow situations 
with fixed separation points. Stansby (1977, 1979, 1981) either 
determined the separation points through an ad hoc scheme 
(steady flow calculations) or fixed them at ±90 degrees 
(oscillating ambient flow) and used the velocity of the nascent 
vortex rather than the velocity at the separation point to 
calculate the vortex strengths. This resulted in significantly 
less vorticity input and prevented the returning vortices from 
interacting freely with the boundary layers and separation 
points. As in previous methods, he amalgamated the vortices 
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and ignored those which crossed the boundary. No detailed 
comparison of the measured and calculated flow kinematics 
was offered. 

Iwagaki et al. (1976) and Sawaragi and Nakamura (1979) 
determined the separation points using Schlichting's (1932) 
periodic boundary layer theory (valid only for Keulegan-
Carpenter (1958) numbers K{= U„,T/D = 2TTA/D)<K 1). They 
have not used the Kutta condition and incorrectly in
cluded an image vortex at the center of the cylinder. Finally, 
the calculations were performed for only three-quarters of a 
cycle, hardly enough time for the transient flow to develop in
to quasi-steady state. Kudo (1979, 1981) investigated the 
sinusoidally oscillating flow about a flat plate normal to the 
flow. The wake was assumed to remain symmetrical. Kudo's 
model used a Kutta condition, combined with a highly com
plicated force- and momentum-free nascent-vortex-placement 
scheme. Ikeda and Himeno (1981) studied the oscillating flow 
about a cylinder and a Lewis form. Separation points were 
assumed to be given by Schlichting's (1932) solution. As with 
Sawaragi and Nakamura (1979), they incorrectly retained the 
image vortices at the center of the cylinder. A relatively crude 
application of the multi-vortex model, with gross simplifica
tions, to oscillating flow about two circular cylinders in 
tandem was attempted by Ikeda (1984a, 1984b). 

Stansby and Dixon (1983) presented a two-dimensional 
method for calculating laminar flows around cylinders of ar
bitrary shape, in which the vorticity created at the surface at 
each time step was calculated using a boundary integral tech
nique. Molecular diffusion even in the highly turbulent wake 
was simulated by random walks and the convection was per
formed with the VIC method. They have obtained reasonable 
agreement with experimental force coefficients and shedding 
frequencies in their simulation of steady and oscillatory flow 
about a circular cylinder. The details of the flow were not in
vestigated and emphasis was placed on efficiency of computa
tion. However, their calculations for K= 10 failed to predict 
the transverse vortex street observed experimentally (see, e.g., 
Sarpkaya 1985, 1986a, 1986b). Obviously, it is necessary to 
match the flow patterns, not just the force coefficents. 
Tiemroth (1986a) criticized Stansby and Dixon (1983) for their 
failure to use an optimal method to satisfy the circulation con
dition and to give rigorously correct arguments in their 
derivation. 

Van der Vegt and Huijsmans (1984), Van der Vegt and de 
Boom (1985), and Van der Vegt (1988) represented the body 
with straightline segments and constant source and vortex 
distributions, and used the random walk scheme with a 
variationally-optimized, grid-insensitive, blob-tracing 
algorithm, with as many as 20,000 blobs, to calculate the 
impulsively-started flow about a cylinder (Re = 26,000). They 
have amalgamated, "with the greatest care," the blob clusters 
"sufficiently away" from the cylinder and discarded those 
beyond a downstream boundary. Their results were strongly 
influenced by the choice of the time step. An optimum step of 
0.045 yielded Cd = 1.34 (mean), 1.66 (max), 0.99 (min), and 
0.11 (RMS). With a time step of 0.15, "the calculated forces 
were considerably worse, despite the fact that the computed 
vortex structures looked reasonable." The separation points 
in Van der Vegt's (1988) optimized calculations are too large 
(see Fig. 18) and nearly correspond to those for a supercritical 
flow even though the Reynolds number is only 26,000. This is 
undoubtedly because of the pseudo-turbulence effects and 
premature transition produced by the algorithm (the noise due 
to bouncing blobs), as anticipated by Chorin (1973). It is 
rather surprising that Van der Vegt was able to obtain 
subcritical-flow drag coefficients for what appears to be a 
supercritical flow. Van der Vegt's (1988) calculations, with as 
many as 51,000 blobs, for the sinusoidally oscillating flow 
about a cylinder (K = 13.7) failed to show a transverse vortex 
street but produced interesting flow patterns. Unfortunately, 

Fig. 18(a) Computed vorticity field of the flow around a cylinder in 
uniform flow at Re = 21,000 (Van der Vegt, 1988) 

I 
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Fig. 18(b) Same as Fig. 18(a) (at a different time) 

no in-line force traces were presented. The differences between 
the calculated (tabulated) statistical data (max, min, mean, 
and rms) for the force-transfer coefficients and those obtained 
experimentally (Sarpkaya 1976, 1987) are too large to be at
tributed either to cycle-to-cycle variations in the measured 
forces or to three-dimensional flow effects, as is often done in 
an attempt to account for the differences between the 
measured and predicted values and/or to justify the use of an 
artificial circulation reduction. In any case, Van der Vegt's 
simulations are restricted, for obvious reasons, to rather short 
times to draw any meaningful conclusions. 

Skomedal and Vada (1985, 1987) and Vada and Skomedal 
(1986) used a slightly modified version of the code developed 
by Stansby and Dixon (1983) and P. A. Smith (1986) to 
calculate steady flow about a single circular cylinder in 
laminar and turbulent flow, supercritical flow around two 
cylinders in various configurations (see also Stansby, Smith, 
and Penoyre 1987), and the vortex-induced oscillations of a 
cylinder (see Sarpkaya 1978a, 1979). They used 15,000 to 
100,000 discrete vortices and an eddy-viscosity model with 
constant mixing length (a combination of vortex methods and 
small-scale modeling to simulate turbulent diffusion in the 
wake) and found that even the smallest mixing length made 
the matters worse compared with the no-turbulent diffusion 
case. Moreover, they had to apply a circulation reduction to 
bring the measured and calculated results into closer agree
ment. As noted earlier, a decay law accounts not only for the 
three-dimensionality effects but also for the shortcomings of 
the numerical model and the nonlinear effects of other ad-hoc 
assumptions. These papers are marred with numerous 
misstatements and ad hoc assumptions and are motivated 
primarily by a desire to develop a computer code to calculate 
force-transfer coefficients for use in the design of offshore 
structures. The results are chiefly interesting in the particular 
context in which they were obtained, and detailed review 
would be out of place here. 

Tiemroth (1986a) used a modified version of the random 
walk method together with the DVIC scheme (see Section 
2.5.2) to calculate the impulsively started flow about a circular 
cylinder and to simulate the flow around a cylinder subjected 
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to regular free surface waves. He introduced a number of 
submerged singularity panels to satisfy the boundary condi
tions at the collocation points on the body. Futhermore, he 
modeled the vortex sheet as a "tent" function (a triangular 
distribution of vorticity), reflected the sheets about the wall 
when they passed through the wall, and used the Rankine 
vortex as the blob core function, a suitable metamorphosis 
between the sheets and blobs, two random walks and a 
modified Eulerian convection scheme with suitable "fixes." 

Tiemroth (1986a), unlike Cheer (1983b), gave rigorously 
correct arguments in the derivation of his equations and 
numerical procedures whenever possible. As such, his work 
represents one of the more comprehensive descriptions of the 
random walk method, coupled with a clear understanding of 
the basic fluid mechanics. He was unable to calculate the shear 
stress and the pressure distribution because the interpolation 
functions used by him were not sufficiently smooth. The 
singular nature of the vortex sheets precluded the direct 
evaluation of the pressure from equation (6). He resigned to 
calculate the force through the use of the rate change of im
pulse, equation (476), ignoring the contribution of the vortex 
sheets in the sheet layer. 

Tiemroth had to choose eight free parameters (the sheet 
layer height, the length of the sheet generation panel, the cell 
size (all relative to D), the maximum sheet strength relative to 
C/ro, the normalized time step UAt/D, the number of Laurent 
series terms retained in the DVIC algorithm, the number of 
singularity panels, and the maximum slip relative to the max
imum sheet strength (for which no sheet is generated), in addi
tion to the Reynolds number. Thus, a complete parametric 
analysis was prohibitively laborious. 

In spite of the enormous effort which went into the 
numerical experiment, Tiemroth's results were quite disap
pointing and mostly qualitative. He calculated the flow about 
the cylinder at Reynolds numbers of Re = 4,000, 9,500, and 
95,000 at very small times (maximum Ut/D = 3 for Re = 9,500) 
and found that the force coefficients were insensitive to the 
variations in Re. Neither the drag coefficients nor the lift coef-
ficents show any resemblance to those measured (Sarpkaya 
1966, 1978b) or calculated (Thoman and Szewczyk 1969; 
Sarpkaya and Shoaff 1979). Tiemroth was unable to calculate 
a Strouhal number since the calculations could be carried out 
only for short times. Also, it was nearly impossible to deter
mine the location of the separation points because the velocity 
field was quite irregular near the boundary. He assumed that 
"separation occurs near the point at which one first observes 
significant amounts of vorticity of opposite sign to that of the 
upstream boundary layer because the generation of vorticity 
reflects back flow." Using this subjective criteria, he obtained 
separation angles between 75 and 80 degrees (measured from 
the front stagnation point). His wave flow calculations were 
limited to very low Keulegan-Carpenter numbers C^<3) at 
which inertia (irpD2U/2) dominates the in-line force and the 
effect of separation is relatively small (Sarpkaya (1986b, 
Sarpkaya and Isaacson 1981). 

The works of Van der Vegt (1988), Tiemroth (1986a), and 
others cast serious doubt on the ability of the random-walk 
method to deal with bluff-body flows. The major drawbacks 
of the scheme are the inability of the noisy blobs to represent 
the boundary layer for the intended Reynolds number, the 
very large CPU times, and the sensitivity of the results to 
numerous assumptions (e.g., blob characteristics, sheet layer 
thickness, and time-interval). 

A finite-difference analysis of the Navier-Stokes equations 
for a sinusoidally-oscillating ambient flow about a circular 
cylinder at K = 5 (Re = 1000) and K= 7 (Re = 700) by Baba and 
Miyata (1987) shows that the calculations can be carried out 
only for short times (less than two cycles of flow oscillation) 
with a non-super computer. 

Mostafa (1987), working with Sarpkaya and using multi-

Fig. 19(a) Unsteady flow past a 120-deg cambered plate (Mostafa, 1987; 
Mostafa et al., 1989) 
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Fig. 19(b) Same as Fig. 19(a) (a later stage of the decelerating flow) 

discrete vortices (with core), simulated accurately the 
sinusoidally oscillating flow about a circular cylinder and the 
decelerating flow about cambered plates (see Fig. 19). His 
calculations for K=12 have reproduced correctly and for the 
first time the transverse vortex street observed experimentally 
(see, e.g., Sarpkaya 1985, 1986b). However, the calculated 
forces were somewhat larger than those measured (Sarpkaya 
1976). No circulation reduction was used in the model (see also 
Sarpkaya et al. 1987). 

The numerical simulation of steady flow past a circular 
cylinder undergoing in-line and/or transverse oscillations 
through the use of two-dimensional unsteady Navier-Stokes 
equations was undertaken by Lecointe et al. (1987) for 
relatively small amplitudes (a/D = 0.13). The results look very 
promising. During the past few years, the researchers at the 
Kuwahara Institute of Space and Astronautical Science 
(Tokyo) have obtained very impressive finite-difference 
simulations of unsteady flow about stationary and vibrating 
cylinders (see Fig. 20) (Tamura et al., 1988; Tsuboi et al., 
1989; Kawamura et al., 1985, 1986; Himeno et al., 1985; 
Shirayama and Kuwahara, 1987; Obayashi and Kuwahara, 
1987; Shirayama et al., 1987; Obayashi and Fujii, 1985, just to 
name a few) using super computers with vector processors 
with capabilities approaching 1 Gflops. Similar results at cor
responding Reynolds numbers have not been achieved by 
vortex methods and are not likely to be achieved soon. 

3.3.2 Flow About Sharp-Edged and Arbitrarily-Shaped 
Bodies. For sharp-edged bodies, various methods of deter
mining the rate of circulation shedding may be made to pro
duce indistinguishable results through judicious specification 
of the disposable parameters. As noted earlier, Giesing (1969) 
has shown that the flow must leave the edge tangentially to the 
windward side provided that the sheet is modelled by a con
tinuous sheet of vorticity in the vicinity of the edge. Similar 
nascent-vortex introduction schemes were used by Soh and 
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Fig. 20 Forced vibration of a circular cylinder. Finite-difference solu
tion of the Navier-Stokes equations (Tamura et al., 1988). 

Fink (1971), in their study of flow about bilge keels. However, 
when discrete vortices are used to introduce vorticity, the cor
rect position of the nascent vortex does not necessarily lie on 
the tangent. Only the unique positions of the nascent vortex 
yield separation-velocity profiles that are compatible with the 
condition that in an inviscid flow the velocity and acceleration 
extrema occur on the body (Mostafa 1987). It turns out that 
the time step used, the separation point velocity, and the point 
of nascent vortex introduction are interrelated and none can 
be assigned arbitrarily or on the basis of trial calculations. 

One of the earliest applications of the discrete vortex 
methods to sharp-edged bodied was made by Ham (1968) in 
connection with the aerodynamic loading of a two-
dimensional airfoil during dynamic stall. His paper contains a 
number of original ideas, including the use of the amalgama
tion of vortices to avoid erratic motion. 

Clements (1973b) used the Schwartz-Christoffel transfor
mation to map the exterior region of a two-dimensional, 
square-based, half-infinite body into an upper half plane. The 
discrete vortices were superimposed on a steady parallel am
bient flow. The Kutta condition was not invoked in this ver
sion of the model. Instead, the strengths of the nascent vor
tices were determined from 0.5 CJ At where Us is the velocity 
in the plane of the rear face of the body a short distance out 
from the separation points. Subsequently, the model was 
modified (Clements 1973b, Clements and Maull 1975) and the 
nascent vortices were introduced a short distance e 
downstream of the separation points, in the planes of the body 
sides, with strengths determined from the Kutta condition. 
The range of the disposable parameter e was determined by 
trial computations using the stability of the Strouhal number 
and the form of the vortex cluster as criteria. The calculations 
gave reasonable Strouhal numbers and vortical structures. 
However, the model was unable to yield a usable base pressure 
coefficient. Standard values for the disposable parameters 
were determined and the model was applied to flow behind a 
blunt-based body with low velocity base bleed, to the cross-
stream oscillations of the same body, to the flow behind a 

blunt-based section with a base cavity, and to flow down a 
step. The results of the first two cases correlated well with ex
periments but those of the last two (base-cavity and step flows) 
did not. Once again, calculations have shown that the use of 
vortex models requires an advance knowledge of the flow 
topology (such as the existence and possibly the position of the 
additional separation points). Deterministic means must be 
devised for the creation, placement and convection of vortices 
so as to reduce the disposable parameters. These will, in turn, 
help to distinquish the shortcomings of the model from the 
behavior of the actual flow and show which particular 
phenomenon controls or influences the observed differences 
between the experiments and predictions. 

Kuwahara (1973) studied the impulsively started flow about 
an inclined plate for various angles of attack (30, 45, 60, 75, 
and 89 degrees) using a conformal mapping to transform the 
plate to a circle. The nascent vortices were introduced at fixed 
points along the edges of the plate and made to satisfy the Kut
ta condition. The calculated drag coefficient had a mean value 
about twice that found experimentally. Periodic vortex shed
ding was predicted but no Strouhal numbers were given. 

Belotserkovskii and Nisht (1973) used discrete vortices to 
study the separated flow over a flat plate at angles of attack 
from 0 to 90 deg. They have used the Kutta condition (their 
Chaplygin-Zhukovskii condition) at the two edges of the 
plate. Other details were not presented. The calculated normal 
force coefficient was far in excess of that measured at the cor
responding angles, save for the range of angles of attack from 
30 to 45 degrees (see also Belotserkovskii and Nisht, 1974, 
1978). 

Sarpkaya (1975b) and Kiya and Arie (1977a, 1977b, 1980) 
have investigated the vortex shedding behind a flat plate at in
cidence to the flow. The former determined the strength of the 
nascent vortices from dT/dt = 0.51% (US being taken as the 
mean of the velocities of the four most-recently-shed vortices) 
and the position of the nascent vortices through the use of the 
Kutta condition. The calculated normal force coefficient was 
about 25 percent larger than the experimental values. Kiya and 
Arie fixed the position of the nascent vortices. The wake axis 
was not aligned with the ambient flow, indicating that equal 
amounts of vorticity were not shed from the two edges of the 
plate over many cycles of vortex shedding. Sheen (1986) 
simulated the vortical flow around a Joukowski airflow in 
unsteady motion, the dynamical effects on an oscillating air
foil with a free vortex in its vicinity, and the vortex shedding 
from an inclined flat plate. In the case of the flat plate, no 
forces were calculated and the comparison with experiments 
were confined to the kinematics of the flow. Basuki and 
Graham (1987) used the VIC method to calculate the im
pulsively started flow past a l l percent-thick Joukowski air
foil at 30-degree incidence and concluded that the method 
predicts too strong a roll-up, an unrealistic suction peak, and 
excessively large fluctuations in lift. More realistic results were 
achieved through the use of a vortex decay technique, 
"provided the circulation removed is transferred so as not to 
affect the bound circulation." Shigemi (1987) used a relatively 
simple discrete vortex model to study the separated flow 
around airfoils. He calculated the effect of the total pressure 
loss on the lift and drag forces. The problem of the recir
culating flow in a square cavity with one edge moving was 
simulated by Shestakov (1979) using the blob algorithm and 
an ADI finite-difference algorithm which solves block-
tridiagonal matrices along each coordinate direction (Beam 
and Warming 1976). 

Shoaff and Franks (1981) ap'plied the model developed by 
Sarpkaya and Shoaff (1979b) to the analysis of flow about 
noncircular cylinders. Considerable difficulties were en
countered with the determination of the separation points and 
the model was found to be very sensitive to the difference be
tween the starting times of the shear layers (Franks, 1983). The 
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comparison of the measured and predicted drag forces (Sarp-
kaya and Kline, 1982) was only fair even after circulation 
reduction. 

Nagano et al. (1982) analyzed the two-dimensional flow 
past a rectangular prism of height h and depth d through the 
use of an appropriate conformal mapping and the discrete 
vortex model. Suitable assumptions were made regarding the 
strength and position of the nascent vortices and the circula
tion reduciton. Their calculations have, in general, correctly 
predicted the trends in experimental results. However, the 
numerical model has failed to predict the large increase in the 
drag coefficient in the vicinity of d/h = 0.62. Inamuro et al. 
(1983, 1984) used the surface-singularity (discrete vortex) 
distribution model to calculate the flow around a square 
prism. They have found good agreement between the 
calculated and measured lift and drag coefficients over a range 
of incidences a = 0 to 45 deg. However, the Strouhal numbers 
were too high. It appears that they were unaware of the earlier 
applications of this type of body and flow modelling. Their 
method does not satisfy the Kutta condition and the boundary 
vortices are allowed to shed downstream from the separation 
points (two front corners only). A random vortex simulation 
of wind-flow over a building is given by Summers et al. (1985). 

Ribaut (1983) used vortex sheets and sources together with 
an ad hoc vorticity dissipation scheme to calculate the flow 
about a flat plate and a blunt trailing-edge section. Computed 
results compared quite well with those measured through 
proper selection of dissipation. 

Sarpkaya and Ihrig (1986) investigated both experimentally 
and numerically the impulsively-started flow about rec
tangular prisms. The body and the shear layers were 
represented by discrete vortices. The condition of zero normal 
velocity on the body was satisfied by minimizing the error in 
normal velocity through the use of the method of least 
squares. The Kutta condition was used to determine the posi
tion of the nascent vortices and the Kelvin condition of zero 
total circulation is satisfied exactly. The vortices were assumed 
to be represented by a Lamb (1954) vortex. The force exerted 
on the body was calculated through the use of the generalized 
Blasius theorem. Comparison of the predicted and measured 
forces showed reasonably good agreement with respect to the 
frequency of the oscillations, i.e., the Strouhal number is cor
rectly predicted. However, the amplitudes of the predicted 
forces are somewhat larger. A numerical solution of this 
problem at Reynolds numbers less than about 1000 (through 
the use of special finite differencing schemes for time and con
vection) is given by Davis and Moore (1982) and Davis et al. 
(1984). 

Vortex shedding from sharp-edged cylinders and plates in 
steady and oscillating flow was investigated by Graham (1977, 
1980, 1985) and by Naylor (1982), working with Graham, 
through the use of three methods (Brown and Michael model 
1954, multi-discrete-vortex model, and the CIC method). 
Their results have shown that oscillatory flow at low 
Keulegan-Carpenter numbers can be represented quite ac
curately. At higher K, the two-dimensional vortex models tend 
to overestimate the vortex shedding and induced forces 
without modelling of secondary separation or three-
dimensional effects (through the use of an exponential circula
tion decay "law"). The application of the vortex methods to 
the prediction of the hydrodynamic damping and the non-
linearities in the responses of barge-like bodies in still water is 
made by a number of investigators (see, e.g., Brown and Patel 
1981), Faltinsen and Sortland, 1987, Ikeda and Himeno, 1981, 
Patel and Brown, 1986, Downie et al., 1988). 

Spalart (1982) and Spalart et al. (1981, 1983) described 
several codes to calculate separated flow about various bluff 
bodies (squares, airfoils, tilt-rotor wing). The flow is divided 
into two regions: an in viscid outer flow and a viscous inner 
region. The inner layer is represented by a piecewise-linear 

vortex sheet of zero thickness. The outer region is represented 
by discrete vortices of constant core radius. The flow in the in
ner region is solved by finite difference discretization in space 
and an implicit method in time. In addition, the Baldwin-
Lomax (1978) algebraic turbulence model ("zero-equation" 
model) is used with some modifications. Spalart (1982) had to 
introduce numerous ad-hoc assumptions (filtering and trun
cating of the radial position of the vortex sheet, artificial 
dissipation, thickness of the inner layer, core radius, coupling 
algorithm, just to name a few). He used vortex merging, when 
some conditions were satisfied (the original version of the 
DVIC scheme). The codes developed were not able to produce 
satisfactory results, as judged by experiments, even with the 
most judiciously selected values of the arbitrary parameters. 
No rolling-up of the vortex sheets were discernable, and the 
drag coefficents were relatively low. For the circular cylinder, 
the drag coefficient decreased steadily as the Reynolds number 
increased from 104 to 107. No drag crisis was observed. 
Spalart attributed the shortcomings of his models to the 
"transition" of the separating shear layers, the difficulty of 
handling the flow around sharp corners (square body), the 
delicate nature of the coupling algorithm, the three-
dimensional character of the real flow, the interference with 
the wind-tunnel walls, etc. The real difficulty with this or 
similar schemes is that it purports to solve the viscous flow 
problem near the boundary of high-Reynolds number flow by 
sidestepping the enormous difficulties encountered with the 
finite difference schemes and through the use of various ar
tifices which, in turn, require numerous ad-hoc assumptions. 
It may work for one or two problems but there is no assurance 
that it will work for a broader class of separated flow prob
lems. It appears that there are no simple detours around the 
difficulties encountered by the finite difference schemes, at 
least not with strongly singular vortex sheets and sensitive 
coupling schemes. 

Mostafa (1987) and Munz (1987) analyzed decelerating flow 
about cambered plates through the use of discrete vortices. 
Nascent vortices were introduced in such a manner that the 
conditions of Kutta and the occurrence of velocity and ac
celeration extrema on the body were satisfied at each time 
step. No circulation reduction was used in the calculations. 
The measured and predicted forces were found to be in 
reasonable agreement, primarily because the calculations were 
limited to the early stages of the decelerating flow. 

3.4 General Three-Dimensional Flows. A number of 
three-dimensional flow examples are described by Leonard 
(1980a, 1980b, 1985) and by Leonard et al. (1985). These in
clude the interaction of vortex rings (Parekh et al. 1983), in
teraction of solitons on a rectilinear vortex (Aref and Flin-
chem, 1984), instability of vortex rings (Ashurst, 1981), and 
the evolution of the time-developing round jet (Ashurst, 
1983). These examples show the underdeveloped state of the 
three-dimensional vortex methods, the extra cost for carrying 
out the calculations, and the great difficulty in comprehending 
the results (without three-dimensional multi-color graphics). 

The growth of a turbulent spot in a laminar boundary layer, 
as the spot evolves from a localized disturbance in the layer, 
was simulated numerically by Leonard (1980b) using a vortex 
filament discription of the vorticity field. Each filament is 
represented by space curve .*;(£,0> where J is a parameter 
along the curve, by a circulation T,-, and by an effective core 
radius a,, which parametrizes the assumed Gaussian vorticity 
distribution within the filament. The generation of new vor
ticity at the wall due to the "no slip condition" is ignored. 
Equation (136) suitably modified to account for the laminar 
base flow and the contributions of the images, is used to 
calculate the motion of the space curves. Leonard found that 
the gross properties of the spot away from the wall, including 
the velocities of the leading and trailing edges and the velocity 
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perturbations, are in good agreement with experiment. 
Leonard's work should be contrasted with the direct 
numerical simulation of turbulent spots in plane Poiseuille 
and boundary layer flow by Henningson et al. (1987). 

DeBernardinis et al. (1981) studied the unbounded 
oscillatory flow around a disk and the bounded oscillatory 
flow through a sharp-edged orifice. The shed vortex sheet is 
represented by a sequence of discrete vortex rings and the solid 
bodies by a distribution of bound discrete vortex rings whose 
strengths are chosen to satisfy the Neumann or zero normal 
velocity boundary condition. In general, the gross properties 
of the flows are predicted accurately. 

Ashurst and Meiburg (1988) presented a numerical study of 
the evolution of the two- and three-dimensional instabilities in 
a temporally growing plane shear layer. They included two 
signs of vorticity to account for the effect of the weaker 
boundary layer leaving the splitter plate and used continuous 
filaments described by cubic splines with second-order integra
tion in space and time. The calculations through the use of 
equation (13Z>) have only been carried out until the initial fila
ment arclength doubled because of the diminishing timestep 
and the increasing number of node points. These bounds 
resulted from the need to deal with node depletion due to large 
strain effects, i.e., from the repeated remeshing of the 
filaments so as to keep the arclength between the nodes always 
less than the filament core diameter but more than half of the 
initial core radius. Ashurst and Meiburg demonstrated the for
mation of concentrated streamwise vortices in the braids (the 
two sleeves connecting neighboring spanwize rollers) as 
observed in the experiments of Lasheras and Choi (1988) with 
spatially-growing mixing layer with similar perturbations. 
Meiburg, and Lasheras (1988) carried out an experimental and 
numerical investigation of the three-dimensional transition in 
plane wakes and demonstrated, among other things, that im
portant features of the development of the three-dimensional 
evolution can be reproduced by vortex methods (identical in 
most respects to the one used by Ashurst and Meiburg 1988) 
even at Reynolds numbers as low as 100. Ghoniem et al. 
(1987a) and Knio and Ghoniem (1988) applied the vortex-ball 
version of the three dimensional scheme to the numerical 
simulation of vortex rings with finite and deformable cores 
(see Fig. 21) and to the simulation of streamwise vorticity in a 
periodically excited planar shear layer of finite thickness. An 
interesting three-dimensional flow visualization and numerical 
analysis [through the use of equation (12)] of a coflowing jet 
is given by Agui and Hesselink (1988), with an eddy captured 
in a hologram for the reader! The method appears to be a 
useful tool for topological analysis of complex structures. 

3.5 Other Applications. There are numerous other ap
plications of vortex methods which do not fit conveniently in
to any of a few broad categories. Inoue (1985b) used the multi-
discrete-vortex model to simulate the flow past a porous plate 
(e.g., a rigid flat parachute). The nascent vortices were in
troduced at two fixed points near the edges of the plate 
[at±(l+0.1)/] and the strength of the vortices was deter
mined from the Kutta condition. A variable time step was used 
to limit the amount of convection of the vortices. No asym
metry was introduced and no amalgamation was employed. 
Consequently, the calculations were restricted to relatively 
small times. The predicted flow kinematics were in good 
qualitative agreement with those obtained from flow 
visualization. 

McCracken and Peskin (1980) combined a finite-difference 
method with the vortex blob algorithm to study the flow of a 
viscous fluid through the mitral valve of the human heart (see 
also Peskin, 1972, 1977, 1982, and Peskin and Wolfe, 1978). 

Special unsteady vortical flows have been investigated in 
connection with dynamic stall around an oscillating wing 
(McAlister and Carr, 1979; Sheen, 1986) and in connection 
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mode of a vortex torus with 
= 0.02 and n = 6 (Ghoniem et al., 

with the explanation of extra lift generated by some fish and 
cetaceans in propulsive movements (Savage, 1979, Maxwor-
thy, 1981). Strickland et al. (1979) used a vortex lattice method 
to study the aerodynamic performance of the Darrieus turbine 
and obtained satisfactory agreement between the measured 
and calculated normal force. 

Panaras (1985, 1987) and Poling et al. (1987) used a confor
mal transformation and discrete vortices to simulate the in
teraction of a blade and a foil with vortices drifting with the 
free stream. Their results have shown that forcing frequencies 
higher than the frequency of vortex passage can be anticipated 
(see also Dickinson, 1988 who used blobs). Mathioulakis and 
Telionis (1983) used a combination of conformal mapping, a 
cut-off length to limit the velocities, and distribution of bound 
vortices to model the flow through a cascade of blades. The 
results illustrated how the developing wake of one blade in
fluences the flow over the next blade and eventually induces 
stall. Recently, Hsu and Wu (1988) developed a vortex flow 
model for the two-dimensional blade-vortex interaction, in
troduced a new trailing-edge flow model (unsteady Kutta con
dition), and developed closed-form solutions for the vortex-
induced unsteady force. 

Random vortex models have been applied in recent years to 
"turbulent" combustion in open and closed vessels (Sethian, 
1984), to the formation and inflammation of planar turbulent 
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jets (Cattolica et al., 1987; Ghoniem et al., 1986 who used the 
so-called dipole-in-cell scheme), and to turbulence-
combustion interactions (Ghoniem et al., 1987b) in a reacting 
two-dimensional shear layer through the use of a new 
transport element method (a generalized Lagrangian particle 
scheme which is constructed to compute solutions of 
convective-diffusive-reactive scalar transport equation). The 
work of Cattolica et al. is particularly interesting for it deals 
with an axisymmetric flame development and offers a com
parison of the predicted flame shapes with those obtained 
through laser-schlieren visualization. In general, it is assumed 
that stochastic methods can be used to model the fluid 
mechanics with the reactive flame front viewed as a flame 
sheet with infinitely fast chemistry. Even if a connection be
tween the random vortex scheme and turbulence were to be 
established, it is not applicable to unsteady combustion 
problems that require a deterministic approach, as noted by 
Cattolica et al. (1987). Turbulent flow is inherently three-
dimensional and the flame speed in such an environment 
depends strongly on flame stretch. There are a number of 
other factors which limit the utilization of the vortex methods 
to study combustion problems. In this connection, the ex
perimental findings of Broadwell and Dimotakis (1986) re
garding the modeling of reactions in turbulent flows and the 
informative review of Spalding (1986) on the application of 
the two-fluid model of turbulence to combustion phenomena 
are worth noting. 

The application of vortex methods to sound generation by 
nominally steady, low Mach number, mean flow over a cavity 
has attracted some attention (see, e.g., Hardin and Block, 
1979, Hardin and Mason, 1977, and Breit et al., 1988). The 
last investigators have found that the Strouhal number at the 
peak of the broadband noise spectrum is in the range of the 
lowest-order edge tones rather than being well above the edge-
tone Strouhal numbers as predicted by Hardin and Mason 
(1977). 

3.5.1 Contour Dynamics. Zabusky et al. (1979) presented 
a contour dynamics algorithm for the Euler equations in two 
dimensions as a generalization of the so-called "water-bag" 
model used to study plasma dynamics. By truncating the ac
cessible range of spatial scales, it is applied to the two-
dimensional, nonlinear evolution of piecewise-constant vor-
ticity distributions, within deformable finite-area-vortex 
regions (bounded by contours of vorticity discontinuity), in an 
inviscid, incompressible and unbounded fluid. Thus, it is a 
method to deal with the interaction of closed contours (two-
dimensional, homogeneous, deformable, jelly-like creatures) 
rather than with the interaction of the individual vortices 
within a contour. Nodes are added or deleted as contours 
elongate, merge, and even undergo "surgery" (to 
systematically eliminate small scales of motion and thus, to 
minimize scale-resolution requirements and the CPU time, 
Dritschel 1988b). The motion of a fluid particle depends only 
on the instantaneous positions of the contours of vorticity 
discontinuity (see Fig. 22) and is given by the following sum of 
contour integrals (Deem and Zabusky, 1978, Dritschel, 1986, 
1988a, 1988b) 

* - * » - — E dt 2TT <"* log dxt (48) 

It has been shown that when two or more deformable vortex 
regions come sufficiently close, self- and mutual interactions 
cause vortex pulsat ion, temporary-and-permanent 
coalescence, and the ejection of vortex arms. The stability 
calculations of Saffman and Schatzman (1981, 1982a, 1982b) 
support Zabusky et al.'s (1979) conjecture that an asymmetric 
Karman vortex street with b/a = 0.281 is stable or has at least a 
slow instability, because of the damping provided by self-
consistent wavelike deformations of the finite area vortex 
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Fig. 22 Definition sketch tor the contour integrals in contour dynamics 
(Dritschel, 1988) 

regions. For detailed discussions and application of the con
tour dynamics algorithm and its motivations, the reader is 
referred to Christiansen and Zabusky (1973), Zabusky (1980, 
1981), Dritschel (1986, 1988a, 1988b), and, in particular, to 
Melander et al. (1987) to find out which vortex is 
"victorious". 

3.5.2 Chaos With Few Singularities. The mutual interac
tion of a number of line vortices in two-dimensions has at
tracted some attention due to its direct connection with 
"chaos." (see, e.g., Aref, 1983,1984, Aref and Kambe, 1988). 
As noted by Keller (1984), "The extensive verbal and 
graphical descriptions of chaotic solutions have not yet been 
condensed into a few general principles." 

The existing state of knowledge may be summarized as 
follows. The equations describing the motion of line-vortices 
in an arbitrary domain are a Hamiltonian dynamical system, 
i.e., equation (20) may be written as (see, e.g., Aref 1984) 

where 

dyk dxk 

H=~4z D W o g l z t - z , . | 
LV l < t < j < N 

(49a) 

(496) 

For a general flow geometry, the motion of TV vortices beyond 
a maximum number N* is chaotic, i.e., sufficient uncertainty 
in the values of the initial conditions leads to an unpredictable, 
unknowable, or uncertain state (but not to a hierarchy of 
scales). It has been generally agreed that an accurate enough 
knowledge of the past may enable one to make reliable predic
tions about the future. It turns out that this is not necessarily 
true. In laboratory experiments, as in astronomy, the initial 
conditions are never given or precisely definable. 
Mathematically, it was possible to avoid this question and 
speak of given initial conditions. It is now realized (as an
ticipated by Poincare, 1893), through analysis and numerical 
experiments with idealized singularities (vortices, sources and 
sinks, never mind the fact that an inviscid vortex cannot be 
turned on and off at will!), that there are systems where any 
finite-precision information about the initial conditions does 
not necessarily lead to finite-precision information about the 
later stages of the motion. Such systems are said to be 
nonintegrable. 

Chaos is not difficult to arrive at by numerical simulation. 
In fact, in the case of vortices in an unbounded domain, the 
calculations are almost trivial. One only needs equation (20), a 
sufficient number of vortices, an integration scheme, and a 
computer (preferably a super one). The motion of N* = 3 vor
tices in an unbounded domain is integrable. For N>4, the mo
tion is nonintegrable. Rigid boundaries lead to a reduction in 
the number of real (as opposed to image) vortices sufficient 
for chaotic behavior (a simple example with N= 1 is given by 
Sarpkaya, 1986a). Note that this has nothing to do with body-
vortex interactions which tend to cause a faster transition to 
three-dimensionality. For circulation-driven chaos, in-
tegrability or nonintegrability is dependent not only on the 
number of vortices and the presence or absence of rigid 
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boundaries but also on the background potential flow into 
which the vortices and their images are imbedded. Chaotic 
advection is a kinematical feature independent of the momen
tum equations governing the flow and can take place without 
circulation about any fluid contour, i.e., one does not have to 
have a vortex system; a pulsed source-sink system will do just 
as well (Jones and Aref, 1988). 

The dynamics of a few potential line vortices or other 
singularities cannot deal with the effects of viscosity, finite 
vorticity, self-induction, spanwise mutual induction instabili
ty, and vortex stretching. Thus, it does not deal with tur
bulence. As noted by Aref (1984) "chaotic few-vortex systems 
are essentially laminar flows with stochastic properties. 
Organized vortex structures, on the other hand, are regular 
flow patterns in otherwise stochastic velocity fields. Neither 
fits comfortably into the inherited hierarchy of laminar versus 
turbulent." 

There are some fundamental questions regarding the type of 
flow simulated by vortex methods which have not yet been 
adequately dealt with by any researcher. These questions stem 
partly from the use of such concepts as chaos (often meaning 
turbulence) and large-scale coherent and small-scale in
coherent structures (implying that there is nothing in be
tween), and partly from the application of personalized 
criteria of credibility to the various numerical simulations. 
The opinions (too many to reproduce here) run from noncom
mittal prologues to highly exaggerated claims. However, it is 
generally agreed that (i) the behavior of a "many-vortex 
system" (exhibiting large coherent structures rather than 
chaotic dynamics with many degrees of freedom) is not an ex
trapolation of the behavior of a "few vortex system" (struc
tureless chaos, uniform disorder), (ii) with suitable refinement 
of the relevant numerical parameters and ad hoc "theories," 
vortex models may be made to predict (often qualitatively) the 
dynamics of large scale coherent structures which in turn 
determine all the dynamics of the flow, assuming that there 
are essentially two scales (large and small) and the effect of in
teractions between small-scales (surely chaotic, three-
dimensional and significant contributors to stresses) and large-
scale structures (sometimes periodic) is negligible (it is a well-
known fact that the various scales of turbulence interact), (iii) 
the large scale structures are superimposed on a background 
of turbulence or, perhaps more accurately, vice versa 
(Roshko, 1976), and (iv) what is calculated is neither a laminar 
nor a turbulent flow with correct physics throughout the flow. 
It is often a noisy, "laminar-like," flow at a reduced Reynolds 
number or a "turbulent-like" flow with a constant eddy 
viscosity, (see Section 3.1 and Peters and Thies, 1982). What is 
missing from the two-dimensional simulations is the three-
dimensionality of the flow, enormous range of scales (a factor 
of about 105 between the largest and smallest eddies), and the 
excitation of many degrees of freedom which constitute the 
very essence of turbulence (see, e.g., Aref, 1983, 1984). 

4 Conclusions 

A numerical model must accurately reproduce a large class 
of experimental observations and measurements with only a 
few disposable parameters, and it must make definite predic
tion about the results of future physical experiments. How 
well did the computational models with vortices fare? To try 
to answer this question we have given a nearly full account of 
the theoretical foundations and practical applications of 
various methods, models, and schemes. Based on this 
background, partial answers, undoubtedly to be refined in 
future years, may be provided as follows. 

The numerical realization of Helmholtz's powerful concept, 
that flows with vorticity could be modeled with line vortices of 
"infinitely small cross section" (quantum vortex lines), turned 
out to be anything but simple and revealed the complex nature 

of the problems to be resolved in dealing with real fluids. 
These problems are subtle, and difficult to assess unam
biguously, as evidenced from the following digest: (i) Kelvin-
Helmholtz instability, sheet crossings, and chaotic motion of 
vortices (distinct from that of a few vortex systems) gave rise 
to various smoothing schemes (e.g., velocity cut-off, 
rediscretization). (ii) Body representation, creation of vortici
ty, specification of the strength and position of the nascent 
vortices, determination of separation points, and the asym
metry introduction led to the use of the approximate 
boundary-layer equations and the Kutta condition in steady 
and unsteady flows, (iii) Inability to deal with three-
dimensional flow effects, vortex stretching, and the annihila
tion of vorticity in the overlapping regions of oppositely-
signed vorticity led to the use of ad-hoc vorticity-reduction 
schemes, (iv) Lack of a meaningful definition of the scale ef
fects (Reynolds number) confined calculations to unknown 
"high Reynolds number Flows," and the comparisons with 
experiments to cases where such comparisons appeared to be 
"reasonable" (not an uncommon occurrence in science), (v) 
Computer time and storage demands, though not too ex
cessive relative to those for the operator-splitting methods, 
forced the development of numerous time-saving schemes 
(e.g., the VIC scheme, merging of vortices, fast algorithms). 
Contrary to common belief, however, the long CPU time is 
not the greatest impediment to the effectiveness of vortex 
methods. Rather, it is the necessity to introduce and to deal 
with a large number of disposable parameters that constitutes 
the most serious drawback, (vi) The difficulties associated 
with the assessment of validity or the range of the validity of 
the numerous, non-linearly related, ad hoc schemes and at
tempts to imitate the high Reynods number "two-
dimensional" flow experiments, by suitably adjusting 
disposable parameters until some features of the observed 
phenomena are mimicked, turned each application into a new 
model. Consequently, no single line-vortex model emerged 
that can be applied to a wide variety of flows. However, prac
tically all well-disciplined and well-documented multi-line 
vortex models predicted results which are neither too far from 
those of the "nearly-two-dimensional" experiments nor suffi
ciently free from ad hoc assumptions (even if some disposable 
parameters spanned only over a narrow range). Nevertheless, 
these models do not, in the strictest sense, fulfill our stated re
quirements for a satisfactory numerical model. It is entirely 
possible that vorticity does not like to be discretized. 

The introduction of vortices with non-deformable finite 
cores (blobs and vortons) reduced the propensity of the vor
tices to sprint and to orbit about each other, but created a 
whole host of new problems. Finite-cored vortices violate 
Helmholtz's law that vorticity is a material quantity, i.e., the 
rigid-blob idealization is not dynamically consistent. If the 
vortices are created, convected, and diffused in a viscous fluid 
(where vorticity is not a material quantity), then one en
counters another kind of problem: The nonlinearity of the 
Navier-Stokes equations does not permit the superposition of 
finite-cored vortices, not even the sum of two Lamb vortices in 
an unbounded medium. 

The foregoing confronted the researchers with a choice be
tween Helmholtz's infinitesimal vortices and finite-cored rigid 
blobs, and their respective undesirable features and in
calculable consequences. It seemed that on could minimize the 
nonlinear effects of the Navier-Stokes equations by 
significantly increasing the number of blobs, by forcing them 
to overlap, and by judiciously choosing the cut-off radius and 
the shape of the velocity cut-off function. The use of the 
Navier-Stokes equations and the creation and diffusion of 
vorticity in real fluids gave rise to the operator-splitting and 
random-walk methods. It seemed, at least when it was first in
troduced by Chorin (1973), that the vortex methods finally ar
rived at a level which could let vorticity convect and diffuse 
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itself according to the laws of motion and take care of the 
scale effects. However, closer scrutiny during the past fifteen 
years has consistently revealed serious problems and, indeed, 
the promise of the method outweighed the results presented 
since its inception. The implied explicit link between the blobs, 
the operator-splitting scheme and the Navier-Stokes equations 
became as much obscured as that between the line vortices of 
Helmholtz and the classical discrete vortex models because of 
a number of complex problems. These are nonlinear, subtle, 
and difficult to assess unambigously, as shown by the follow
ing brief summary: (i) None of the applications of the 
operator-splitting method managed to produce quantitative 
results, in good agreement with analytical solutions or 
physical experiments, without the use of an ample doze of 
disposable parameters subjected to successive stepwise 
refinements (e.g., the size, spacing, number, and the max
imum circulation of blobs), (ii) The demands for computer 
storage and time increased by one or two orders of magnitude, 
confining the calculations to large computers or to shorter 
times (early stages of flow) or to smaller Reynolds numbers 
and requiring fast algorithms or the vortex-in-cell techniques. 
The use of the VIC scheme brought back the grid and, along 
with it, diffusion and the confinement effects, (iii) The 
statistical nature of the results required the averaging or 
smoothing of the velocity and pressure distributions and in
tegrated quantities (e.g., lift and drag forces whose instan
taneous values often do exhibit unrealistically large varia
tions), (iv) The number of physical parameters, ad hoc 
schemes, and convection fixes became very large, making a 
parametric analysis of their separate as well as combined ef
fects on the predicted results practically impossible, not
withstanding the convergence proofs and arguments regarding 
the robustness of the algorithms devised, (v) All of the con
vergence proofs dealt with laminar flows in the absence of 
boundaries, assuming a sufficiently smooth initial blob 
distribution. Excluded from the proofs is the fact that the dif
fusion of vorticity is affected by the wall proximity and by the 
boundary layer where the vorticity is not smoothly or 
uniformly distributed, initially or at any other time, (par
ticularly near the separation points). The noise of the bounc
ing blobs causes premature transition in the boundary layers. 
In fact, the works of Van der Vegt (1988), Tiemroth (1986a), 
and others cast serious doubt on the ability of the random-
walk method to deal with bluff-body flows, (vi) In regions of 
turbulent flow (wake and/or boundary layer), random walk 
does not make sense since viscous diffusion relative to tur
bulent diffusion is negligible, (vii) Turbulent flows require tur
bulence models to simulate small scale structures since random 
walk (without the use of a turbulence model) does not simulate 
turbulent diffusion or its consequences. There is, in fact, no 
proof that random walk at any Reynolds number produces 
anything other than viscous diffusion (except, of course near 
the boundary where vortex sheets and blobs, like a swarm of 
vorticity-flies, create a great deal of unwanted noise, and 
symptomatic transition). Thus, operator-splitting methods 
solve only laminar flow problems at small Reynolds numbers 
in a relatively more crude fashion than finite-difference 
methods. "If the diffusion process is to be considered tur
bulent, then the choice of the turbulent diffusion coefficient 
and the turbulent length scale distribution are unknown input 
parameters." (viii) The blob must be regarded as 
mathematical artifices to limit velocity since vorticity carrying, 
non-deforming, fluid elements cannot occupy the same space 
at the same time, (ix) The evolution of large local strains in
creases the blob spacing relative to the core radius (local blob 
population depletion) and can lead to large errors in the 
resolution of the vorticity and the velocity field, and the 
calculations may be carried out only for relatively small fluid 
displacements. The use of sub-blobs to repopulate the areas 
depleted by large strains causes a further blob-population ex

plosion. The velocity fields before and after reblobbing are 
not the same in the vicinity of the new blobs. 

The mismatch between model-based predictions and ex
perimental results is not entirely due, or always attributable, 
to deficiencies in the model, but also lies in the three-
dimensional nature of "two-dimensional" experiments. All 
vortex calculations show that the three-dimensional nature of 
the flow cannot be ignored. Clearly, flows known to be highly 
three-dimensional cannot be modelled with two-dimensional 
vortex dynamics. However, the application of vortex methods 
to three-dimensional flows is limited to relatively simple cases, 
yielding only qualitative information, often in unbounded do
mains, and requiring a healthy doze of approximations and a 
great deal of case-specific ingenuity. According to Ashurst 
(1987), the existing three-dimensional vortex methods suffer 
either from short wavelength instability of the connected 
vortex filaments or from the lack of spatial resolution when 
disconnected vortons or vortex sticks are used. As far as the 
three-dimensional bluff-body flows are concerned, again, we 
do not expect more than qualitative simulations in the laminar 
flow regime, requiring a large number of ad hoc "theories." 
These pessimistic remarks are tempered by the fact that the 
most significant results are often qualitative judgements which 
provide insights into the real physics of the phenomenon. This 
is in conformity with the more modest objectives of vortex 
models: identification of large-scale structures and acquisition 
of new insights. There seems to be general consensus that large 
scale structures rising above (or floating over) the small scale 
turbulence can be calculated qualitatively (and sometimes 
quantitatively, if the disposable parameters are carefully 
tuned); if the large-scale structures do not become quickly 
three-dimensional (or do not have the propensity to become 
three-dimensional as in the case of turbulent wall-bounded 
flows); if the large structures do not reside too long in a nearly 
confined region (e.g., in a recirculation zone), so as not to suf
fer excessive diffusion; and if the flow is in an equilibrium or 
weakly out-of-equilibrium state. Thus, the early stages of two-
and three-dimensional flows without walls (free shear layers, 
vortex rings and their interaction, two-dimensional combus
tion based on scalar mixing), the early stages of two-
dimensional and axisymmetric flows about bluff bodies 
(preferably with sharp corners), and the transient flow over 
airfoils and control surfaces can be simulated with relatively 
greater confidence and fewer assumptions than the subsequent 
nonlinear regimes. Some sort of "surgery" on the flow struc
tures is needed to systematically eliminate small scales of mo
tion in order to continue the calculations (e.g., filtering of 
filaments to remove sections where the radius of curvature is 
less than the core radius) (see Ashurst and Meiburg, 1988, 
Dritschel, 1988b). 

The relative advantages and disadvantages of the 
Lagrangian and finite difference techniques have been pointed 
out by many investigators (see, e.g., Rizzi, 1987, Ashurst and 
Meiburg, 1988) and remains a subject for future study and, no 
doubt, vigorous debate. Often cited among these are the grid-
free nature of the vortex methods and the exact treatment of 
the boundary conditions at infinity, (without the use of the 
VIC scheme); the need to deal only with vorticity, where it ex
ists, rather than with velocities and pressure at every node 
point on a finite grid (i.e, concentration of the computational 
resources in a limited spatial domain); the better suitability 
(with proper smoothing!) of the Lagrangian method to deal 
with transient problems where vorticity regions have large 
deformation with steep gradients (which is hardest for finite 
difference methods); the advantages of vortex methods when 
vorticity fills the computational volume, more or less uniform
ly; the large CPU times for both methods (Biot-Savart law ver
sus finite differencing over a large number of grid points); the 
need for a number of ad hoc assumptions in each method, par
ticularly in vortex methods; the artificial diffusion in grid con-
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vection schemes versus convection errors in the Lagrangian 
trajectories; inability of either technique to deal with tur
bulence without the use of turbulent diffusion or a sub-grid 
model (e.g., a sub-grid-scale eddy-viscosity model); the ability 
of the discrete vortex models to deal with flows of unknown 
topology (through the use of various smoothing schemes); the 
advantages of panel methods in dealing with wing vortices 
when the overall topology is known; and other advantages and 
disadvantages presented and discussed in this review. It must 
be emphasized that such a comparative listing is somewhat ar
tificial and does not do justice to the subtleties of either 
method. Only the challenging problems and expectations 
bring out the best and the worst in them. The problem and 
what one expects and wants to do with the answer, rather than 
the exaggerated claims made on behalf of each method, will 
determine to a large extent whether one wants to follow the 
vorticity field or the velocity field. In either case, the code 
solves only an idealized mathematical problem and the results 
must be interpreted in view of the real physics. 

In the midst of the remarkable progress made so far, it is 
rather difficult, if not dangerous, to speculate as to what is 
likely to happen in the future. Nevertheless, we expect that the 
territory of small-scale structures will remain impenetrable in 
the foreseeable future by any method or computer. The temp
tation to appeal to turbulence effects to justify the use of 
rather arbitrary parameters will not diminish. Some of the ad 
hoc assumptions will move into the "well-established facts" 
column as the congregational empathy and sample calcula
tions and predictions with a given code increase. Demarcation 
of the areas of application of the various methods will be fur
ther blurred and there will be greater joint use of both 
methods (Eulerian and Lagrangian) on a given problem (e.g., 
treating the boundary regions by finite-difference techniques 
and convecting vorticity away by Lagrangian techniques), so 
that methods of the future may be hybrids. The Eulerian and 
Navier-Stokes finite-difference methods will benefit more 
from the progress to be made on computers (hyper-
computers?), numerical theories (reduction of truncation er
rors and artificial dissipation), and simulations (e.g., com
putation of flow about geometrically complex configurations, 
hydro- and aeroelastic response of bodies, various compressi
ble and incompressible unsteady flow phenomena, dynamic 
response of lifting bodied, combustion, and better assessment 
of the turbulence models). However, the finite-difference 
methods will not replace computational methods with vortices 
as a research tool, but they will complement and supplement 
them invaluably. The classical vortex methods, preferably for 
bluff body flows (using separation points, line vortices or 
blobs, no forced viscous diffusion), the operator-splitting 
method, preferably for shear layers, laminar flames, and com
bustion (using blobs, random walk, and the VIC scheme, and 
the spectral algorithms), and the panel methods, preferably 
for vortical flows in aerodynamics (in competition with Euler 
and Navier-Stokes codes) will continue to exist and flourish 
through complimentary numerical and physical experiments 
as long as they maintain demonstrable advantages over other 
methods. They may even be able to make definite predictions 
about the results of future experiments if they are tuned to the 
physics of the flow. In any case, the enigmatic smile of com
putational methods with vortices will continue to attract new 
admirers who, like the others before them, will try to minimize 
the existing deficiencies of these methods, bring new insights, 
pose new questions, and rediscover the power of the rich and 
remarkable concepts set forth 130 years ago by Helmholtz. 
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Development of Rotational Speed 
Control Systems for a Savonius-
Type Wind Turbine 
An attempt is made here to increase the output of a Savonius rotor by using a flow 
deflecting plate. When the deflecting plate is located at the optimum position, the 
rotor power increases nearly 30 percent over that when no deflecting plate is present. 
The rotor torque was found to become almost zero, when the plate is placed just in 
front of the rotor. In addition, two systems to control the rotational speed of a 
Savonius rotor are developed. These permit the rotor to be stopped in strong wind. 
Operating characteristics of the two control systems are investigated. 

Introduction 
Savonius-type wind turbines cannot compete with high

speed propeller and Darrieus type wind turbines from the 
standpoint of aerodynamic efficiency. Nevertheless, they are 
simple to construct, insensitive to wind direction and self-
starting. In considering these advantages, it is clear that 
Savonius wind turbines would be used more often if their 
rotor performance could be improved. 

Since Savonius published the results of an experimental 
study of this type of wind turbine in 1931 [1], numerous ex
perimental attempts have been made to improve rotor perfor
mance. For example, refer to Bach [2], Khan [3], Sheldahl et 
al. [4] and Ushiyama et al. [5]. These experimental studies ex
amined factors such as the section shape of a rotor bucket, the 
number of the buckets and the overlap ratio of the buckets. 

On the other hand, an analytical model was developed for 
performance analysis by Wilson et al. [6]. Similarly, Van 
Dusen and Kirchhoff [7] presented a vortex sheet model. 
Although these models have contributed to the improvement 
of Savonius rotors, a number of important issues have yet to 
be considered. For example, flow separation from bucket tips 
of the rotor has been ignored. To remedy this, Ogawa [8] at
tempted to analyze the flow around the Savonius rotor using a 
discrete vortex method. As the next step of the research, 
several experimental studies on the Savonius rotor with 
various auxiliary devices have been conducted to further 
enhance the performance. Sabzevari [9] and Sivasegaram [10] 
used an asymmetrical box with a funnel-shaped wind inlet in 
which the Savonius rotor was placed. Ogawa et al. [11] in
vestigated rotor performance by the use of the guide vanes 
placed around the Savonius rotor. Recently, experimental 
studies to enhance rotor performance by the applicaton of the 
effects due to mutual interaction between two closely spaced 
Savonius rotors were performed by Charwat [12] and Ogawa 
et al. [13]. 

In the present work, a flow deflecting plate, which consists 
of a simple flat plate, is used to increase the rotor output. The 
upstream flow is deflected by the plate, and the velocity of the 
flow which streams into the concave face of the bucket is in
creased. The effects of the deflecting plate parameters, i.e., 
the plate width, A, the distance between the rotor and plate, 
B, and the azimuthal angle of the plate, 0, are individually 
examined. 

For practical application of a wind turbine, a rotational 
speed control device or a protection device for strong winds is 
essential. It is neither reliable nor safe to use only a mechanical 
braking device, e.g., a disk brake, for speed control. To ac
complish rotational speed control of a wind turbine it is 
necessary to control the aerodynamic force which operates on 
the rotor. In this study, two systems of rotational speed con
trol are developed by moving the deflecting plate around the 
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Fig. 2 Configuration of a Savonius rotor and a deflecting plate 
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rotor, and the characteristics of the control systems are in
vestigated with a wind tunnel. 

The Effects of a Deflecting Plate 

The test apparatus and instrumentation are shown in Fig. 1. 
The rotational speed of the rotor is controlled by a DC motor 
(V), and the motor shaft is connected to the rotor shaft via a 
torque pickup (5). The number of revolutions is measured by 
using a magnetic pickup (5)and a counter. The Savonius rotor 
consists of two buckets with a circular camber (180 deg) and 
two end plates. The rotor diameter R, rotor height, H, overlap 
ratio, S/D, and wind velocity, U, are 0.140m, 0.295m, 0.2 and 
approximately 7m/s, respectively. 

0.10 
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Fig. 5 Effects of 0 on Cp 

Fig. 3, 4, and 5 Uncertainty in Cp = ±0.04, in/i = 

1.6 

: 0.01 at 20:1 odds 

An attempt to enhance the performance of a Savonius rotor 
by the application of a deflecting plate was previously 
reported by the authors [14]. In that study, the effects of the 
section shape of the deflecting plate on the rotor performance 
were investigated. It was concluded that a simple flat plate 
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B = 

Cp = 

D = 

width of a deflecting plate, 
m (Fig. 2) 
distance between a deflect
ing plate and rotor center, 
m (Fig. 2) 
power coefficient 
^ITu/plPRH) 
diameter of a rotor 
bucket, m 

H 
n 

R 
rn 

S 

= rotor height, m 
= rotational speed of a 

rotor, rpm 
= rotor diameter, m 
= arm lengths of tail wing 

(Fig. 7) 
= overlap distance of two 

buckets, m 

T 
U 

e 
e 
» 
p 
O) 

rotor torque, N»m 
wind velocity, m/s 
angle of wind direction 
azimuthal angle of a 
deflecting plate (Fig. 2) 
tip-speed ratio ( = Roi/2U) 
air density, kg/m3 

angular velocity of rota
tion, rad/s 

54/Vol. 111, MARCH 1989 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.94. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



produced the best results. The current investigation is a 
followup to the previous study, and the effects of the flat 
deflecting plate parameters (Fig. 2), i.e.,'A, B, and 6 on the 
rotor performance are investigated in detail. 

Results of the experiments for the determination of best 
combination of the parameters A, B, and 0 are shown in Figs. 
3 to 5. Figure 3 presents the effects of varying the distance, B, 
on the power coefficient, Cp, for a given value of A ( = 0.57?). 
The optimum value for B was found to be 0.7R, i.e., Cp 
becomes smaller for any other B value. The values of Cp for 
the cases in which A =0.5R and 0.67? are nearly the same as is 
shown in Fig. 4. Based on these results and because a smaller 
plate is better as an attached apparatus, a deflecting plate with 
A = Q.5R was adopted. 

Changes in the angle 6 influences the output power con
siderably as shown in Fig. 5. At 0 = 30 deg (,4=0.57?, 
B = 0.77?), the maximum value of Cp becomes approximately 
27 percent larger than that of the rotor without the deflecting 
plate, while the output becomes almost zero, when the plate is 
placed just in front of the rotor (0 = 0 deg). Apparently, the 
aerodynamic force which operates on the rotor can be con
trolled by moving the deflecting plate around the rotor. The 
plate should be maintained at 0 = 30 deg, if the wind velocity 
or the rotation speed of the rotor is lower than the designed 
value. In such a case more wind energy can be extracted than 
when the deflecting plate is not used. In a strong wind, or if 
the rotor rotates beyond the design speed, the rotor rotation 
can be decreased by moving the deflection plate towards the 
0 = 0 deg position. In this study, two systems to control the 
rotational speed of the Savonius rotor are developed by vary
ing the location of the deflection plate. 

Fig. 6(a) 

Control With Tail Wings 
Several kinds of tail wings which have been tested in this 

study are presented in Fig. 6. Figure 6(a) shows a single tail 
wing, that is 0.75R wide and is connected to the deflecting 
plate. An attempt was made to keep the deflecting plate at 
0 = 30 deg by balancing the aerodynamic forces on the de
flecting plate and tail wing. But it was not possible to stop the 
deflecting plate at 0 = 30 deg. The plate invariably swung 
laterally ± 10 deg around 0 = 30 deg. Subsequently, an attempt 
was made to stop the deflecting plate at 0 = 0 deg by changing 
the setting angle of the tail wing from 135 to 160 deg (Fig. 
6(b)), but the swinging motion of the deflecting plate and tail 
wing remained. The reason for this swinging motion is 
thought to be due to the fact that the tail wing is located in the 
wake region which is disturbed by the rotating rotor. To cir
cumvent this, as a next attempt, a mechanism which has two 
tail wings of width 0.57? were tested. The length of two arms 
shown in Fig. 6(c) is 0.87?. In this case, the swinging motion 
was found to be smaller than that of the case with one tail 
wing, but it is still present. Figures 6(d) and 6(e) show the two 
tail wings system with longer arms (1.17?). In each case, the 
wings are located outside of the wake region and the deflecting 
plate remains still at 0 = 30 deg, when the setting angles of 
wings are 130 and 110 deg. As shown in Fig. 6(e), the de
flecting plate is moved to the position of 0 = 0 deg and remains 
motionless, when the setting angle of the left-hand side tail 
wing is changed from 130 to 90 deg. Accordingly, it is possible 
to move the deflecting plate by changing one of the setting 
angles of two tail wings. In this study, a coil spring is attached 
to the left-hand side tail wing to change the setting angle 
automatically at a strong wind as shown in Figs. 6(d) and 6(e). 

Fig. 6(6) 
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Fig. 6(c) 

Fig. 6(d) 

Fig. 6(e) 

Fig. 6 Tail wings 

In Fig. 7, an anemoscope, a Savonius rotor with two tail 
wings, and the guide vanes to change direction of the wind are 
presented. The wind direction, 0, is changed by altering the 
setting of the guidevanes using a DC motor. The range of the 
variation in the wind direction is ±25 deg. The wind direction 
is recorded as the voltage change of the potentiometer which is 
attached to the axis of the anemoscope. The wind velocity, U, 
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Fig. 7 Experimental devices of rotational speed control 

\ 

1600 
E 

1200-

800-

0 

1 

" ^ ^ ^ n 

i i 

- - ^ — . 

T " 

i 

~^~^~^\ 

i 

-

\ 

~8£ 

6 V 

o Jo 

0 1 2 3 4 5 
t min. 

Fig. 8 The change in n without control (in case the wind direction, O, 
varies) 

Fig. 9 The control of n with tail wings presented in Fig. 6(d) (in case the 
wind direction, O, varies) 

is varied by the damper of a sirocco fan of the wind tunnel and 
is measured with a hot-wire anemometer. 

The change in the rotational speed, n, when the deflecting 
plate is fixed, the rotor torque, T, the wind speed and the wind 
direction variations are presented in Fig. 8. The rotational 
speed begins to decrease as 0 becomes greater than about 5 
deg, and n becomes nearly zero when the wind blows directly 
against the deflecting plate. As shown in Fig. 8, the rotational 
speed changes markedly, if the deflecting plate does not track 
the change in the wind direction. The defects in the record of 
the velocity, U, indicate the wakes after the guidevanes. When 
the deflecting plate is moved by the tail wings (Fig. 6(d)) which 
follow to the change in the wind direction, the rotational speed 
does not decrease (Fig. 9). In the case when the wind velocity 
increases and the deflecting plate is fixed at 0 = 30 deg, n in
creases as shown in Fig. 10. 
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the wind velocity, U, increases) 
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Figure 11 presents the characteristics of the control system 
which is shown in Fig. 6(d). When the wind velocity increases, 
the coil spring lengthens and the deflecting plate moves toward 
0 = 0 deg position (Fig. 6(e)). Then, the rotational speed n 
decreases. It is possible to keep n constant or to let the rotor 
stop by selecting the spring factor properly. The effects of the 
existence of tail wings on the power coefficient Cp were in
vestigated, and as may be seen in Fig. 12, there is almost no ef
fect on performance. 
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Fig. 14 The control of n with a stepping motor (in case the wind direc
tion, 0, varies) 
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Control With a Stepping Motor 

In an effort to design a self-regulating control system, a 
computer controlled system was developed. The rotational 
speed, wind velocity and the wind direction are fed into a per-

Journal of Fluids Engineering MARCH 1989, Vol. 111/57 

Downloaded 02 Jun 2010 to 171.66.16.94. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



sonal computer via an A/D converter and processed. A step
ping motor is connected with the deflecting plate and moves it 
on the basis of the processed results (Fig. 13). The 
characteristics of this system are presented in Figs. 14 and 15. 
Figure 14 shows the results of the case in which it is pro
grammed for the deflecting plate to move based on the infor
mation of the wind direction. The results when the wind direc-. 
tion, 9, is constant and the wind velocity varies are presented 
in Fig. 15. As shown in Figs. 14 and 15, the rotational speed, 

• n, is kept almost constant, and it is proved that more precise 
control than that with tail wings is possible. 

Conclusions 

In this study, experiments to improve the performance of a 
Savonius wind turbine rotor by using a flat deflecting plate are 
conducted. The effects of the deflecting plate on the power 
coefficient are investigated in detail. It was found that the 
rotor power was approximately 27 percent greater than that of 
a rotor without the deflecting plate, when the plate with A = 
0.5i? and B = QJR is placed at 0 = 30 deg. The rotor torque 
was shown to vary considerably with the azimuthal angle, 8, of 
the deflecting plate. Two systems to control the rotational 
speed by using the deflecting plate were developed. Ex
perimental attempts of mechanical control with tail wings 
revealed that this is an effective means to control rotational 
speed, especially as one of the protection devices for strong 
winds. It was also shown that the other system, a computer 
controlled closed loop system, is also applicable and more ap
propriate for precise control than that with the tail wings. 

Accidents are shocking, not only because they are serious, 
but also because they are unexpected and rare. The odds are 
with us, so we routinely forget to buckle up, delay vehicle 
maintenance, and drive carelessly and too fast. Our behavior 
would be quite different if we cracked up our cars twice a 
week! 

The mails are similarly seductive. We routinely send the 
most precious things through the various delivery services, 
counting on their safe arrival. This seems especially true of 
authors, editors, and printers. This note is to remind you that 
lightning does strike, accidents do happen, and authors should 
take care to back up their precious material such as original 
drawings and photos. 

In late December, for the 41st consecutive quarter, our JFE 
Office packed up the 'next' issue (March 1989 in this case) and 
sent it to New York to the ASME Production Editor, via 
United Parcel Service. This box, containing sixteen original 
manuscripts, never arrived and is now declared officially lost. 
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Numerical Computation of 
Turbulent Flow in a Square-
Sectioned 180 Deg Bend 
Fine-grid computations are reported of turbulent flow through a square sectioned 
U-bend corresponding to that for which Chang et al. (1983a) have provided de
tailed experimental data. A sequence of modeling refinements is introduced: the 
replacement of wall functions by a fine mesh across the sublayer; the abandonment 
of the PSL approximation (in which pressure variations across the near-wall 
sublayer are neglected); and the introduction of an algebraic second-moment 
(ASM) closure in place of the usual k-e eddy-viscosity model. Each refinement is 
shown to lead to an appreciable improvement in the agreement between measure
ment and computation. Direct comparisons with the measured rms turbulent veloci
ty give further support to the view that the ASM scheme achieves a generally 
satisfactory description of the Reynolds stress field. Even with the most refined 
model some discrepancies between the experiment and computed development are 
apparent. It is suggested that their removal may require the use of a turbulent 
transport model in the semi-viscous sublayer in place of the van Driest (1956) 
mixing-length treatment used at present. 

Introduction 
Chang et al. (1983a) have provided detailed experimental 

data of the development of a turbulent flow around a 180 deg 
square-sectioned bend with a bend radius equal to 3.375 times 
the hydraulic diameter of the duct. The flow geometry is 
shown in Fig. 1(a) and the flow Reynolds number based on the 
hydraulic diameter was 58,000. An upstream inlet tangent of 
some 30 hydraulic diameters meant that the boundary layers 
filled the duct at entry. The secondary flows induced by flow 
around the bend were thus stronger than in a flow with thin in
let boundary layers. The experiment was designed to provide a 
searching test for turbulent-flow computational schemes and 
in that respect it succeeded admirably. At 90 deg into the bend 
a large "hole" developed in the streamwise velocity towards 
the inside of the bend, Fig. 1(b), a feature that both Chang's 
(1983) own computations and subsequently those of Johnson 
(1984) (see also Chang et al. (1983b)) and Birch (1984) entirely 
failed to mimic. 

These computations were based on a semi-elliptic discretiza
tion of the Reynolds equations in which streamwise diffusion 
was dropped but where fully three-dimensional effects were 
included in the pressure field. Thus, the pressure was stored 
over the full flow domain while all other dependent variables 
(which included, besides the velocity components, the tur
bulence energy and its dissipation rate) were held on two adja
cent planes only, the values being successively overwritten as 
the solution sequence made repeated streamwise sweeps 
around the bend until convergence. 

Present address: Department of Mechanical Engineering, Korea University, 
Seoul, Korea. 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division July 17, 1987. 

The choice of a semi-elliptic solver allowed a considerably 
finer mesh than had been possible in earlier fully elliptic 
studies (e.g., Humphrey, 1981). This refinement, together 
with the use of quadratic upstream differencing for convection 
(in place of some more stable but highly dispersive first-order, 
upwind scheme) led to the conclusion that numerical errors 
were of only minor significance. For example, Johnson (1984) 
reduced the mean forward step size to 1 deg over the first 90 
deg of the bend (compared with 2 deg in Chang et al.); this 
produced a small improvement in predictions over the first 45 
deg of the bend where the secondary motion was becoming 
established but virtually no change to the computed flow pat
tern at 90 deg. 

Most of the computations reported in the above studies 
employed the standard k — e eddy-viscosity model (EVM) of 
turbulence whose adequacy in a strongly curved, highly three-
dimensional flow is at least suspect. Chang (1983) and 
Johnson (1984) both attempted computations with an 
algebraic second-moment (ASM) closure which has a track 
record of capturing much better than EVMs the effects of 
streamline curvature on the Reynolds stresses. However, this 
type of turbulence model gives rise to numerical instabilities 
and, as a result, in those studies residuals could not be reduced 
to convincingly negligible levels even when standard upwind 
differencing was used. 

The present paper reports the outcome of our subsequent 
computational work at UMIST aimed at resolving the causes 
of the very severe disagreement between the computed and 
measured behavior of the 180 deg square bend flow. The 
springboard for this study was provided by parallel work on 
flow through bends of circular cross section. Those computa
tions (lacovides and Launder (1984a), Azzola et al. (1986)) re-
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tained the k — e EVM but discarded the "wall functions" 
employed in the square-sectioned bend to bridge the viscous 
sublayer and buffer region adjacent to the walls. In their place 
a fine near-wall mesh was used in which the turbulent viscosity 
was obtained from Van Driest's (1956) version of the mixing-
length hypothesis generalized to the case of nonplanar flows. 
The extra fine mesh was achieved with no extra core penalty 
by neglecting the very small pressure variations across this 
near-wall sublayer—the so-called PSL approximation 
(lacovides and Launder (1984b)). In contrast to the case of the 
square-sectioned bend, the computations achieved quite 
satisfactory agreement with the experimental data. Further 
improvements for the circular-sectioned bend (albeit fairly 
minor) arose from including an ASM in place of the eddy-
viscosity model (lacovides and Launder, 1985). Our efforts, as 
described in the remainder of the paper, have therefore been 
directed at importing these various physical and numerical 
refinements into a solving procedure for rectangular sectioned 
bends, a flow which from both numerical and physical stand
points has emerged as a considerably more complex flow than 
the circular-sectioned bend. 

The Mathematical and Numerical Model 
The equations of mean motion for the turbulent flow 

around a square-sectioned bend are conveniently expressed in 
cylindrical coordinates. X and Y map the cross-sectional 
plane, while progress around the bend is expressed through 
angle 4>. Thus: 

Continuity 

±u 
13X^U)+-3¥^V)+^{PW)]=0 (1) 

Mean Momentum 

pCC*)+ScC*)=D(*)+SD(*)-pR(*) +SR(*)+Sp(V) 

where ^ refers to the velocity component in question and the 
operators C(^) , D(ty), and R('if) have the following 
significance: 

C(")=7;[jx ^U^)+J¥ ^^)+i ( H 
l(d/ d* \ d ( d* \ 

DW=7;hx\^^)+-3¥V^-w-) 
1 d /^d^N"! 

The term R{^) expresses the action of the turbulent 
stresses, \p denoting the fluctuation component of velocity in 
question and the overbar the usual Reynolds averaging. The 
quantities Sp (^) , Sc (*), SD (*) and SR (^) differ according 
to the velocity component as indicated in Table 1. 
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For both turbulence models considered, the following closed-
form transport equations are solved for the turbulent kinetic 
energy and its dissipation rate: 

Turbulence Energy 

C(k)=D(k)+SD(k)+P-pe (3) 

ASM 

c, 

cm D 
DW 
EVM 

k 
lm 
P 

Pit 

PSL 
Re 
rc 

Rm 
scm 
SD{*) 

SP{9) 

= Algebraic Stress Model 
= turbulence model 

constants 
= convection of ^ 
= duct diameter 
= diffusion of ^ 
= Effective Viscosity Model 
= turbulent kinetic energy 
= turbulent mixing length 
= turbulent kinetic energy 

generation rate or 
pressure 

= turbulent stress UjUj 
generation rate 

= Parabolic Sub-Layer 
= bend radius of curvature 
= local radius of curvature 

Rc+D/2-X 
= turbulent mixing of ^ 
= convective curvature 

source term 
= diffusive curvature source 

term 
= pressure gradient source 

term 

s*(*) 

u 
U 

UjUj 

uTr 

V 

V 

W 

wb w 

X 
Y 
y 

= turbulent stress curvature 
source term 

= radial mean velocity 
component 

= radial velocity fluctuation 
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Fig. 1(a) Flow geometry and coordinate system used 
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Fig. 1(b) Streamwise mean velocity profiles at 90 deg station. 
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Fig. 1(c) Staggered three-dimensional stress field 

Table 1 Details of diffusion terms 
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Turbulence Energy Dissipation Rate 
2 

C(e) =D(e) +SD{e) +cel - J - P-ca • ^ - (4) 

where operators C (e), D (e), SD (e), and Pk are as defined for 
the turbulence energy equation but with ck replaced by cs. 

The turbulent stresses themselves are obtained from one of 
two routes. With the eddy-viscosity model: 
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dV •j ; uw=-p,{-
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1 dV 
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(5) 
d(t> / ' ' \ dX rc d4> rc / 

where v,=clJcl/e and rc denotes the local radius of curvature 
from the bend center. 

When the ASM scheme is used, the stresses are obtained 
from the following tensor statement of the model: 
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« ? denotes the unit vector normal to the wall 
and 

* T O - - C 2 [ ^ — J - V ] 

When expressed in cylindrical coordinates, this form gives 
rise to a lengthy set of equations which, nevertheless, for com
pleteness are given in the Appendix. The constants appearing 
in the turbulence equations are assigned the values indicated in 
Table 2; these values are the same as in our circular-bend com
putations, and, indeed, are those that have been used in 
several other studies with the same turbulence model. 

From the duct wall to a distance 0.04 times the duct 
hydraulic diameter,2 the above models were replaced by 
adding to the molecular viscosity a turbulent viscosity given by 
the mixing-length hypothesis: 

",=Pm -K-dx. dx, J 
(7) 

2This corresponds to a distance where the y + value is greater than 50 at all 
positions; at the first node the y + value was around 3. (At different bulk 
Reynolds numbers one would probably want to choose a different thickness for 
the mixing-length region to keep the y + values in the same range). 

Cel 

1.44 

Table 2 

ce2 Ck 

1.92 0.22 

Values of model coefficients 

ce cx c2 c[ ci c^ 
0.15 1.8 0.6 0.5 0.3 0.09 

cl 

2.55 

where a generalized Van Driest form is used for the mixing 
length: 

/„, = 0.419x„(l - exp - (*„U„/26u)) (8) 

Here x„ is the distance from the (nearest) wall and Urr is the 
resultant wall shear velocity at the point on the surface 
reached by dropping a perpendicular from the point in ques
tion. Within the partially turbulent region where this model is 
applied, the velocity profile is highly skewed; for example, on 
the flat surfaces of the bend the maximum secondary flow oc
curs for x„ U„/v = 5. The mixing-length hypothesis was chosen 
on the basis of the satisfactory agreement achieved with it in 
computing flows on spinning discs, cones and cylinders (e.g., 
Koosinlin et al. 1974) where, as here, the skewing of the veloci
ty in the semi-turbulent sublayer is also large. 

The standard grid employed to cover the half cross-section 
of the duct between the symmetry plane and on each wall was 
25 x 47 in the normal and radial directions respectively with 
eight nodes covering the near-wall sublayer where the mixing 
length model was employed. Initially the PSL approximation 
was applied over this same region. The standard forward step 
in the bend section was 2 deg arc. Thus, 90 planes were re
quired for the full bend; a further 10 planes were employed for 
the inlet and exit tangents extending respectively two 
diameters upstream and downstream. The absence of stream-
wise recirculation allows the computation to be terminated 
shortly after the bend exit. Variations from this standard are 
noted in the text. 

The finite-volume solving procedure employed in the 
calculations has been described in earlier contributions 
(Iacovides and Launder, 1985; Iacovides, 1986, Azzola et al. 
1986), so here only a brief summary is provided. 

9 The usual staggered arrangement of U, V, W, P nodes is 
adopted, iterated either by way of the SIMPLER (Patankar, 
1980) or SIMPLE (Patankar and Spalding, 1972) algorithm. 
Generally the former was found to be faster when residuals 
were large, the latter when convergence was approached. 

9 The nondiffusive QUICK approximation of Leonard (1979) 
is used for discretizing convective transport in the cross-
sectional plane of the duct. 

9 Although in the initial stages of iteration streamwise sweeps 
were made with all coefficients evaluated upstream, as the 
residuals fell to moderate levels first one, then two, in-plane 
iterations were introduced. 

9 Successive streamwise passes continued until the normalized 
mass and momentum residuals on any plane had fallen 
below 0.04 percent. 

9 When the ASM scheme was employed, the turbulent stresses 
were staggered relative to the velocity nodes in order that 
they were situated on the boundaries of the momentum con
trol volumes on which they acted, as shown in Fig. 1(c). 
This practice reduced interpolation and assisted stability. 

9 Nevertheless, various stability-enhancing measures proved 
necessary to secure convergence with the ASM. (Numerical
ly the flow proved to be very much more difficult than the 
flows reported earlier in the toroidal bend, Iacovides and 
Launder (1985)). The stresses themselves were solved in a 
pointwise manner as recommended by Huang and 
Leschziner (1985). 

8 When, during iteration with the ASM scheme, the turbulent 
kinetic energy production fell below that given by the k—e 
EVM, the latter was adopted as the production rate of k and 
the (negative) balance was credited to the energy dissipation 
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Fig. 2 Computed and measured development of streamwise velocity 
profile on symmetry plane. 
o o Measurements, Chang et al. (1983a); 

Computations, Johnson (1984); 
Computations, present study using fc-e model-mixing length 
with PSL approximation 

rate. This reassignment from "production" to "dissipa
tion" brought major stability improvements due in part to 
the different ways that sources and sinks are handled in the 
solver. 

The introduction of the ASM increased the overall CPU 
time required for a fully converged solution by roughly a fac
tor of 2. 

Finer meshes have been employed for checking purposes to 
establish the sufficiency of the numerical resolution in the case 
of fully developed flow in a circular-sectioned bend. (In this 
limiting case only three streamwise planes are needed allowing 
major refinement on the cross-sectional plane.) Two studies 
carried out by lacovides and Launder (1985, 1987) concerning 
circular-bend flows and rotating square-duct flows (where the 
flow field is similar to that of a U-bend) indicate that, provid
ed a sensible grid distribution is chosen across the wall layer, a 
minimum of about 25 nodes from the wall to the duct center is 
sufficient to obtain a grid-independent velocity field at this 
level of turbulence modelling for bend flows without recircula
tion. These earlier computations and Johnson's (1984) ex
plorations, coupled with the fact that the non-diffusive 
QUICK scheme was here employed for approximating cross-
stream convection, indicate that the flow field as a whole was 
free from significant numerical error. Especially sensitive 
quantities such as the local wall shear stress may, at locations 
where the friction factor falls to low values, be in error by a 
few percent. 

Presentation and Discussion of Computations 
The first set of computations began three diameters 

upstream of the bend employing as starting conditions a 

careful fit to the measured mean velocity at this station 
(Chang et al. 1983a). The turbulence energy at node points 
was likewise obtained from an interpolation of measured pro
files. The inlet energy dissipation rate is obtained from 
e = k3/2/l where close to the wall / increases linearly with 
distance from the wall with slope 2.44 and levels off to a near
ly uniform level in the core of approximately 0.5D. This 
distribution is broadly similar to that previously assumed in 
computing flow in straight square ducts (e.g., Launder and 
Ying, 1973). The development of the center plane profile of 
mean streamwise velocity around the bend obtained in the pre
sent computations is compared both with the experiments of 
Chang et al. (1983a) and Johnson's (1984) computations in 
Fig. 2. The latter, it is recalled, used precisely the same model 
of turbulence but, as is usual in elliptic and three-dimensional 
flows, adopted wall functions to bridge the near-wall viscous 
region. From this comparison it may be said that the present 
fine-grid near-wall treatment brings the flow development 
over the first 45 deg of the bend into close agreement with the 
measurements. Further around the bend the present computa
tions can still be said to do better than the earlier ones though, 
compared with the difference from the measured behavior, the 
improvement is slight. The relative improvement along the 
other data-traverse lines (displaced from the center plane) is in 
fact even less than shown in Fig. 2. 

The above computations applied the PSL approximation 
(lacovides and Launder, 1984b) in the immediate wall vicinity 
to avoid having to store the three-dimensional pressure field 
there. This scheme had worked admirably in the case of cir
cular sectioned bends (lacovides and Launder, 1984a, Azzola 
et al., 1986) but, in searching for a cause of the large dif
ferences that remained between the computed and measured 
behavior, it came increasingly into question. While pressure 
differences across the sublayer around most of the duct 
perimeter would assuredly be negligible, in the corners it was 
the pressure variation normal to the wall that mainly caused 
the secondary flow to change abruptly its direction from (say) 
running along the flat end wall to flowing down the convex in
side wall. So, full inclusion of pressure variations was 
arguably important to capture the secondary flow properly. A 
further run was therefore made in which the pressure-
correction equation was solved even within the thin near-wall 
sublayer. Since by this stage our interest had strongly focused 
on the behavior at 90 and 130 deg, the computations were ter
minated at the end of the bend (180 deg) in order to make bet
ter use of computing resource. At the bend exit a uniform 
streamwise pressure gradient was imposed. Our experiences 
are (lacovides and Launder, 1984a) that this inaccurate exit 
prescription of pressure does not contaminate the flow field 
more than about 25 deg upstream of the exit plane with the 
present bend curvature ratio. A different initialization pro
cedure was also employed in this case in that the starting pro
files upstream of the bend were obtained from a separate com
putation of flow developing in a straight duct. These exhibited 
some systematic (albeit small)) differences from the measured 
entry profiles principally because with an eddy-viscosity stress-
strain law no "turbulence-driven" secondary flow are created. 
The differences between measured and computed velocity at 
three diameters upstream of the bend nowhere differed by 
more than 3 percent of the bulk mean velocity from the data. 
In view of the experience of Johnson (1984), Birch (1984) and 
ourselves that the flow at 90 deg and beyond is insensitive to 
inlet conditions,3 we do not believe that the small difference in 
the prescribed inlet profiles can have made a significant con-

Experimental evidence of this insensitivity has been provided by 
measurements by Johnson and Launder (1985) in an identically proportioned U-
bend. These showed a dynamic behavior at 90 deg essentially unaltered when the 
inlet tangent was increased from 30 to 90 hydraulic diameters. 
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Fig. 3 Slreamwise mean velocity profiles at 45 deg station. 
o o Measurements, Chang et al. (1983a); 

Computations, present study using k-tlmixing length without 
PSL approximation 

tribution to the differences in the computed behavior noted 
below. 

The streamwise velocity profiles along the center plane and 
four other lines parallel to it obtained from dropping the PSL 
approximation are shown in Figs. 3-5 at 45, 90 and 130 deg. 
Clearly the inclusion of pressure variations across the sublayer 
has brought about a marked improvement in the level of 
agreement with the measured velocity profiles. There is now 
an appreciable trough in streamwise velocity near the inside of 
the bend at 90 and 130 deg—broadly similar to but less pro
nounced than the experimental data. The very great dif
ferences between these computations and those previously ob
tained using wall functions (e.g., Chang et al., 1983b) do 
strongly suggest that the latter approach ought not to be used 
in computing three-dimensional flows with strong secondary 
motions. 

Despite the improvement, substantial differences still re
mained between the computed and measured flow develop
ment. The computations were therefore repeated employing 
the algebraic second-moment (ASM) closure described in the 
previous section; again, the PSL approximation was not 
adopted. The inlet conditions were generated by an ASM com
putation in a straight duct. The resultant streamwise mean 
velocity profiles at 90 and 130 deg are compared with ex
periments in Figs. 6 and 7. What is plainly evident from these 
figures is that the ASM computations are in considerably 
closer agreement with the measured data than those obtained 
from the eddy-viscosity model. The agreement is particularly 
close at 130 deg. 

A key factor in obtaining the correct primary flow is the 
prediction of the strong secondary motion. Certainly, as 
shown in Fig. 8, the three different computational models of 
the flow discussed above produce markedly different secon
dary flow patterns. The pattern obtained when using the PSL 
approximation is nearly the same as that of Johnson (1984) us-

100 r 0-50 

O50 

INSIDE OUTSIDE 

Fig. 4 Streamwise mean velocity profiles at 90 deg station. 
o o Measurements, Chang et al. (1983a); 

Computations, present study using k-e/mixing length without 
PSL; 
Computations, present study using ft-(/mixing length with PSL 

I 0 0 r 0 50 

050 

050 

INSIDE OUTSIDE 
Fig. 5 Streamwise mean velocity profiles at 130 deg station. Key as 
Fig. 4. 

ing wall functions. This is consistent with the axial velocity 
profile at 130 deg being nearly the same for these two cases. 
The adoption of a fine grid without the PSL approximation, 
Figs. 8(c) and 8(d), produces a multi-cellular secondary flow 
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Fig. 6 Streamwise mean velocity profiles at 90 deg station. 
o o Measurements, Chang et al. (1983a); 
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Fig. 8 Secondary flow vectors at 130 deg station. 
(a) Johnson (1984); 
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Fig. 7 Streamwise mean velocity profiles at 130 deg station. Key as 
Fig. 6. 

pattern with the ASM model (Fig. 8(d)) producing one extra 
vortex than the EVM computations. While it is not possible to 
construct a corresponding diagram from the limited ex
perimental secondary flow data, there seems little doubt that 

OUTSIDE INSIDE 

Fig. 9 Axial velocity contours at 130 deg station 

the multi-cellular behavior generated by the ASM computa
tions corresponds most closely to the real flow. The figure also 
helps us infer the sequence of developments that gives rise to 
the trough in streamwise velocity near the inside of the bend. 
Over the initial part of the bend the conventional single secon
dary vortex carries near-wall fluid to the inside of the bend. 
Due to this accumulation, slow-moving fluid near the sym
metry plane is pushed away from the inside wall towards the 
outside of the bend. However, because its streamwise velocity 
is low it cannot proceed far against the radial pressure gra
dient: the fluid is deflected at roughly right angles to the sym
metry plane and then turns back on itself towards the inside of 
the bend. Thus, the interaction of primary and secondary flow 
leads to a progressive vortex breakdown. The streamwise 
velocity contours shown in Fig. 9 are distorted in an obvious 
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Fig. 10 RMS streamwlse turbulent velocity fluctuations. 
o o Measurements, Chang et al. (1983a); 

Present ASM computations 
(a) 45 deg; (b) 90 deg; (c) 130 deg 

way by this secondary flow pattern and it is clearly this that 
leads to the appearance of the trough in the profiles in Fig. 7. 

The ASM scheme yields predictions of the turbulent as well 
as the mean velocity components. In Figs. 10 and 11 the rms 
streamwise and radial fluctuating velocity profiles are shown 
along lines parallel with the symmetry plane (the corre
sponding mean velocity profiles being those of Figs. 6 and 
7). On the whole the computed profiles exhibit distributions 
very similar to the measurements of Chang et al. (1983a), 
though there are a few points of discrepancy. For example, 
the measured sharp spike in near the symmetry plane 
at 90 deg is only hinted at in the computations, presumably 
because the radial gradient in streamwise mean velocity 
there (the main agency for generating the normal-stress com
ponent) is under-predicted, c.f. Fig. 6. A considerably too 
low level of is also observed at this station along the 
line midway beween the symmetry plane and the end wall. 

Conclusions 
The present paper has reported four refinements on earlier 

computer simulations of the 180 deg U-bend experiment of 
Chang et al. (1983a). The following conclusions may be 
drawn: 

1. The successive refinement of the mesh has, on its own, 
had only a very minor effect on the computed flow pattern. 
Purely numerical errors were thus not a major factor in the 
failure of earlier computations to produce a flow field close to 
the measured one—at least not where the QUICK scheme had 
been used for discretizing convective terms. 

2. The replacement of wall functions by a fine grid to 
resolve the buffer and viscous sublayers (even though only the 
very simple mixing-length hypothesis was used in this region) 
has led to a marked increase in the realism of the computed 
flow. 

3. Due to the very rapid variation of pressure normal to the 
passage walls in the corners of the duct, the use of the 
parabolic sublayer approximation (PSL) introduced serious 
errors. Attempts to drop the approximation in the corner 
region did not prove successful. 

4. The replacement of the standard k — e eddy-viscosity 
model by a standard algebraic second-moment closure led to a 
further significant improvement in the level of agreement of 
the computed flow with experiment. 

5. Obtaining a reasonable representation of the primary 
flow is intimately bound up with predicting the secondary flow 
with reasonable fidelity. The present computations suggest 
that the troughs in the primary flow arise from a "blockage" 

w 

151 

0 -

5 -

0 -

45° 

2y/D=0 

^JJ^^^ 
075 

ir """-N 
0875 

" ' " • J 

Fig. 11 RMS radial turbulent velocity fluctuations. Key as Fig. 10. 
(a) 45 deg; (b) 90 deg 

of the return secondary current near the symmetry plane by 
about 90 deg of arc accompanied by a breakdown of the 
secondary motion into a very complex multi-cellular pattern. 

Finally, it should be said that, despite the marked im
provements in the accuracy of the computations, not insignifi
cant differences still remain between the computed and 
measured distributions. It must remain at present a matter of 
speculation whether these differences are mainly due to 
failures of the turbulence model in the conventional sense or 
possibly to the secondary motion developing a certain 
periodicity giving rise to a "sloshing" about the plane of 
geometric symmetry (Humphrey, 1984). Our computations of 
the thermal field, which will be reported in a future com
munication, suggest that the neglect of turbulent transport by 
the strong secondary motion in the near-wall sublayer (as is 
implicit in the use of the mixing-length hypothesis there) is 
probably the most significant contributor to the remaining 
discrepancies—at least so far as the surface heat transfer coef
ficients are concerned. 
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A P P E N D I X 

Cylindrical Version of Algebraic Stress Equations 

Component Stress Equations. Transformation of the ten-
sorial ASM equations to cylindrical polar form produces the 
following very cumbersome set of equations for the compo
nent stresses. These equations can be rearranged as 

Ajj^+BjjU2 + CjjW2 + Djjuv + E0uw+Fyvw = Gu 

Let us first introduce the following abbreviations 

a = / - C 2 

P = Cl-l+P/e 

d = $t/ctk 

(A-l) 

A Y ^ ( ^ ) f { l / Y ) 

Ax'=(i^y / ( / / x ) 

A y ' = ( i ^ > ( / / F ) 

(A-2) 

The functions f(l/X) and f(l/Y) denote the wall-pressure-
reflection effects associated with two opposite walls and are 
given by 

f(J_\=l '_ 
J\x) X + D-) 

(A-3) 

The expressions for Ai} Gy may then be written: 
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Measurements in Vertical Plane 
Turbulent Plumes 
Mean-flow and turbulence measurements have been obtained in two-dimensional 
vertical turbulent plumes in a nominally still ambient. The plumes were generated by 
injecting hot water vertically upwards from the bottom of a reservior containing 
cold water. A two-component Laser Doppler Anemometer (LDA) and a "cold-
film" resistance thermometer were used to obtain instantaneous velocity and 
temperature measurements in the plume. The present mean-flow measurements have 
confirmed many of the earlier measurements on plane plumes, but have also in
dicated some important differences. The use of the two-component LDA made it 
possible to obtain data on turbulent intensities, turbulent fluxes and other details of 
the structure of turbulence in plane plumes. The turbulence measurements have 
shown that the eddy viscosity and turbulence are significantly higher in the plume 
compared to an isothermal jet. Detailed measurements of energy balance suggest 
that buoyant production contributes substantially to this increase. 

Introduction 
There are several practical applications for the study of tur

bulent plumes, for example, cooling-tower and chimney ex
hausts, and hot-water discharges from power plants to lakes 
and rivers. The plume is also an interesting complex flow in 
which turbulent motions are strongly influenced by buoyancy. 
Study of the plume may lead to a better understanding of the 
role of buoyancy in turbulent shear flows. Early methods of 
prediction of buoyant jets were based on the well-known in
tegral techniques [1-4] using empirical physical assumptions 
about the flow (e.g., the value of an entrainment coefficient). 
More recent methods [5-8] involve solution of the complete 
set of governing partial differential equations using turbulence 
models of varying degrees of complexity. 

The empirical input required in either of the above ap
proaches is to be obtained from detailed experiments. There 
have been only a few such experiments reported in the 
literature. These include the early experiments such as those of 
Rouse, Yih, and Humphreys [9] on round and plane plumes, 
and Lee and Emmons [10] on a plane plume; the more recent 
round-plume experiments [11-13] and the plane buoyant-jet 
and plume experiments of Kotsovinos [14] reported in [15]. Of 
the above, the experiments of Kotsovinos represent the only 
extensive study on plane buoyant jets and plumes, reported in 
the literature. These experiments were performed in water us
ing a one-component Laser Doppler Anemometer (LDA) for 
instantaneous velocity measurements and a microthermistor 
for temperature measurements. Extensive as the work was, the 
single-component LDA used in [14] did not allow the direct 
measurement of the turbulent transport of momentum and 
heat in the cross-stream direction. While detailed data of these 
turbulent fluxes are available for the round plume from [13], 
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similar information is not available for the plane plume. The 
present experiments were designed primarily to obtain this in
formation for the plane plume. In the present experiments, as 
in those of Kotsovinos and List [15] (referred to henceforth as 
KL) heat was used to produce buoyancy. A two-component 
LDA system, coupled with a microresistance thermometer 
(cold film) was used to measure two instantaneous velocity 
components U and V and the instantaneous temperature ex
cess AT above the ambient. The study was focused on the 
asymptotic plume rather than on the entire range of buoyant-
jet flows. This was done because the asymptotic plume is in
dependent of the initial conditions and hence, represents a 
well-defined flow configuration. It is, therefore, ideal both for 
the study of buoyancy effects on turbulence and for use as a 
basic test case in the development of predictive models for 
buoyancy-driven flows. 

Experimental Conditions and Procedure 
The experiments were conducted in a hydraulic flume 7 m 

long X 0.45 m wide x 0.75 m deep, which served in the present 
experiments, simply as a large reservior. A nozzle 5 mm in 
width (D) and 250 mm in span, located at the bottom of the 
flume served as the source of the two-dimensional vertical 
submerged buoyant jet. The flow was confined between two 
plexiglas false side walls spaced 250 mm apart, to improve the 
two-dimensionality of the flow. The two-component LDA us
ed had a spatial resolution of about 1.1 mm in the spanwise 
direction and 0.1 mm in the other two directions. The 
temperature sensor was located within about 1 mm 
downstream of the center of the focal volume of the LDA. 
The experimental apparatus, instrumentation and procedure 
were identical to those used for the study of nonbuoyant jets 
reported in [16]. Special problems associated with LDA 
measurements in a nonisothermal flow and with the con
tamination of the ambient by the heated fluid, as well as the 
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means to assess and minimize these problems are also de
scribed in that paper. These will not, therefore, be discussed 
here. Note that the measurements extended up to a height of 
60 D above the nozzle exit and that the last measurement sta
tion was about 60 D below the free surface. The results for the 
plane jet presented in [16] also showed that there are no 
significant free-surface effects on the flow in the region of 
measurements. 

Flow rate through the nozzle was measured using an orifice 
meter. The temperature of the jet fluid Tj and the ambient Ta 

were measured using thermistors. The flow rate was main
tained constant to within 1 percent and the temperature excess 
A7}( = Tj — Ta) to within 5 percent over the duration of the 
experiment. Their average values were used to define the (span 
averaged) nominal exit conditions for velocity, temperature 
excess and fluxes of mass, momentum, buoyancy and heat. It 
may be noted that the accurate knowledge of the exit condi
tions is not essential for the study of the asymptotic plume and 
that the exit conditions have been used only for either non-
dimensionalizing the data or deriving a length scale represen
tative of the axial distance at which the flow can be expected to 
transform to the asymptotic plume state. The nominal values 
of these exit conditions are adequate for this purpose. The ex
periments pertained to four cases of plume flows. These are 
designated as MSC3, MSC3X, MSC3Y and MSC4. The 
nominal exit conditions corresponding to the flows are as 
shown in Table 1. The coefficient of thermal expansion of 
water, a in the above table, was obtained from the following 
expression suggested in [14]: 

a = (-0.073 + 0.19T-0.0027T2 + 0.00002r3)X 10. (1) 

where Tis the temperature of the water in degrees centigrade. 
R, is the exit Richardson number defined by 

agATjD 
R,=-

"! 
(2) 

Flow Designat 

MSC3 
MSC3X 
MSC3Y 
MSC4 

Table 1 

ion 

Experimental conditions 

cm/s 

10 
10 
10 
5 

^ 
23.2 
19.0 
22.0 
22.3 

T 
7 a 
"C 24.4 

21.0 
22.4 
21.1 

a,- x 104 

(^C)-i 

4.42 
3.85 
4.18 
4.10 

*J 

0.050 
0.036 
0.045 
0.179 

Even though the flows MSC3X and MSC3Y do not differ 
significantly in their exit conditions from MSC3, these ex
periments were performed on different days and can therefore 
be used to ascertain the repeatability of the experimental 
results. The exit conditions in all the cases were such as to 
cause the laminar flow to become unstable almost immediately 
after exit (say within x/D = 1), as observed from dye visualiza
tion tests. Transition to turbulence can be expected to have 
been complete typically in the range 20<x/D< 30, as inferred 
from the transition criterion of Bill and Gebhart (see List 
[17]), namley the Grashoff number Gr at the transition point 
xtr is given by 

Gr = gxfra(ATm)/v2 = 3 X 108 (3) 

Thus the plumes studied can be expected to be turbulent over 
most of the measurement range. It will also be shown that all 
the flows reached practically the asymptotic turbulent plume 
state by x/D = 30 with regard to the mean, and by x/D = 40 
with regard to most turbulent properties. They, however, ex
hibited mild evolving trends in respect of some details of the 
turbulent structure in the measurement range 30 <*/£>< 60. 
The conservation of the (kinematic) heat flux integral H, 
defined by the two-dimensional, integral energy equation 

H=\ (UAT)dy=\ (UAT+ut)dy 
J —oo J —oo 

(4) 

is a good test of not only the two-dimensionality of the flow in 
the neighborhood of the measurement plane, but also the 

N o m e n c l a t u r e 

B = kinematic buoyant force, 

C +0° Ay 
J -Oo p 

half width, defined as the 
value of y at U 

dy 

2 
or at AT=-

ATm 

entrainment coefficient 
(equation (23)) 
growth parameter (equa
tion (20)) 
jet width at exit 
Grashoff number (equa
tion (3)) 
acceleration due to gravity 
kinematic heat flux 
(mean + turbulent) 

db 
spreading rate 

dx 
(equation (11)) 

M = kinematic momentum flux 
(equation (7)) 

M* = nondimensional momen
tum flux (equation (8)) 
Prandtl number 
kinematic mass flux 
(equation (6)) 

CE = 

CP = 

D = 
Gr = 

S = 
H = 

K, = 

Pr 
Q 

Q* = nondimensional mass flux 
(equation (19)) 

q = square root of turbulent 
kinetic energy per unit 
mass 

R = Richardson number 
(equation (5)) 

T = temperature 
AT = excess temperature above 

the ambient 
A T*m = nondimensional maximum 

excess temperature (equa
tion (24)) 

t = temperature fluctuation 
U = axial velocity component 
u = turbulent fluctuation in U 
V = cross-stream velocity 

component 
v = turbulent fluctuation in V 
w = turbulent fluctuation in 

the spanwise direction 
x = axial coordinate 

x* = nondimensional axial 
coordinate, xPjn/Mj 

y = cross-stream coordinate 
a = coefficient of thermal 

expansion 
/3 = kinematic buoyancy flux 

(equation (8)) 

e = rate of dissipation of tur
bulent kinetic energy 
(equation (28)) 

y = specific weight 
A7 = excess specific weight 

above the ambient 
7) = y/b 
p = density 
a = coefficient 
v = kinematic viscosity 

Subscripts 

a = ambient 
max, m = maximum value 

cl = centerline of the jet 
j = jet exit 

M = pertaining to momentum 
o = virtual origin 
t = pertaining to temperature 
u = pertaining to velocity 

30 = pertaining to station 
x/D =30 

Other Notations 

overbar = time-mean value 
prime = rms value 
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Table 2 Experimental data of mean-flow properties 

designation 
and virtual 
origins 
(xoM/D; xot/D) 
Uncertainties: 

X 

~~D~ 

±0.005 

AT) 

°C 

±0.20 

M 

emVs2 

±4.0 

Q 

cm2/s 

±0.50 

emVs3 cm2 /s2 

±1.00 ±0.70 

H 

cm2 - °C 
s 

±2.0 ±0.05 
cm 

±0.05 

£/„ 

cm/s 

A7*„, 

°C 

±0.25 ±0.20 ±0.040 
MSC3X 
( -1 .0 ; -6 .0) 

MSC3Y 
(0.0; -5 .0) 

30 
40 
50 
60 
30 
40 
50 
56 

21.80 
21.60 
22.20 
21.80 
19.55 
18.63 
19.96 
19.09 

122.8 
159.7 
168.1 
225.7 

115.9 
131.1 
185.3 
179.3 

24.50 
31.45 
37.30 
49.80 

24.96 
30.47 
38.93 
40.60 

31.90 
31.71 
28.35 
31.71 

29.70 
25.85 
33.43 
30.59 

7.03 
7.25 
6.70 
6.57 

7.04 
6.36 
7.27 
7.59 

114.5 
117.1 
107.0 
125.3 

111.3 
102.1 
132.1 
122.8 

2.04 
2.24 
2.54 
3.44 

1.80 
2.32 
2.77 
3.14 

2.84 
3.00 
3.52 
4.69 

2.24 
3.16 
3.26 
4.52 

7.01 
6.68 
6.41 
6.58 

6.60 
6.09 
6.53 
6.19 

5.47 
4.18 
3.37 
3.00 

5.41 
4.06 
4.01 
3.49 

0.253 
0.242 
0.310 
0.340 

0.297 
0.325 
0.310 
0.355 

MSC3 
( -4 .0 ; -5 .0 ) 

20 
30 
40 
50 
60 

23.40 
22.80 
23.20 
23.30 
23.40 

119.7 
160.6 
185.5 
240.0 
296.0 

19.90 
28.00 
33.20 
44.90 
53.50 

47.20 
43.78 
39.34 
41.79 
39.80 

8.69 
8.32 
7.09 
8.27 
6.96 

145.8 
139.5 
133.7 
144.4 
137.5 

1.24 
1.72 
2.16 
3.25 
3.52 

1.51 
1.96 
2.46 
3.77 
3.80 

8.13 
7.97 
7.58 
7.26 
7.78 

8.67 
6.15 
4.79 
3.76 
3.23 

0.216 
0.232 
0.225 
0.273 
0.235 

MSC4 
(6.0; 6.0) 

30 
40 
50 
56 

22.39 
22.29 
22.46 
21.85 

76.8 
90.0 

113.0 
87.0 

17.20 
22.20 
28.40 
27.70 

25.60 
20.30 
17.65 
9.22 

6.66 
5.60 
5.73 
2.67 

89.99 
76.60 
70.50 
40.90 

1.50 
1.93 
2.23 
2.35 

1.87 
2.28 
2.60 
2.33 

5.69 
5.51 
5.60 
4.96 

6.19 
4.52 
3.54 
2.39 

0.287 
0.305 
0.280 
0.298 

absence of any stratification of the ambient. Figure 1 shows 
results for the different flows in the measurement range 
20 < x/D < 60. The data are normalized using the value of H at 
x/D =30. It is seen that flows MSC3 and MSC3X are 
reasonably two-dimensional and are free from any significant 
stratification effects. The result for flow MSC3Y is marginally 
acceptable. The flow MSC4 was particularly difficult to set up 
and measure, because of very low velocities and very large 
temperature fluctuations associated with this flow. It is possi
ble that three-dimensional and stratification effects were 
present in this flow. Even so, some results from this experi
ment are presented to demonstrate that flows originating from 
substantially different initial conditions evolve towards the 
same asymptotic plume state. The experimental uncertainties 
in the case of the other three flqws_are^ U= ±2.5 mm/s; 
Af=0.2°C; u',v',t' = 5 percent; uv, ut, vt= 10percent; u2v, 
y3 = 15 percent. Uncertainty estimates for the other derived 
quantities were obtained from an error-propopagation 
analysis in some cases and from the standard deviation of the 
data, in the other cases. These are indicated on the respective 
figures. 

Theoretical Framework 

The theoretical framework for the analysis of the asymp
totic plume has been well developed in the earlier literature [9, 
15] and also briefly reviewed by List [17]. A dimensionless 
number often used to characterize plane vertical buoyant jets 
is the Richardson number R, which following KL, is defined 
as 

with 

R(x) = (g/M)3 /3 

!

+O0 

Vdy 
— oo 

M-- •J:>J: {02 + u2)dy 

(5) 

(6) 

(7) 

0 = - ( — UAydy= - ( (UAy + uAy')dy (8) 
J — oo p J —oo p 

being the kinematic fluxes of mass, momentum and buoyancy, 
respectively. All heated jets can be expected to reach eventual
ly an asymptotic state in which all the flow properties assume 

1.2 

1.0-

0.8 

1.2 

1.0 

O0.8 

x i-o 
x o , 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

( 0 ) 

-v-- -V-

(b) _jA 

(c) _0_.__.o___ r j - —a-i—o--

free surface 
of water 

(d) 

x /D 

Fig. 1 Conservation of kinematic heat flux, (a) MSC3X, (b) MSC3Y, (c) 
MSC3, (d) MSC4. Dashed lines represent mean through data. Vertical 
bars represent uncertainty in the measurements. 

self similar distributions. Under such conditions, it can be 
shown [9] that the behavior of a fully turbulent plume is com
pletely described by specifying only the initial kinematic 
buoyancy flux fy defined by 

Pj = <*jgHj (9) 

and that the following functional relationships can be written 
for such a plume: 

R = constant 

b=Kxx 

M=oMpyix 

um=oupy3 

and 

<*g&Tm = ^ m - ain = $p/{xct) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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Fig. 2 Variations of kinematic fluxes of mass and momentum. Sym
bols as in Figs. 1. Uncertainties: x*: ± 0.3; Q": ±2.2 percent; M": ± 3.3 
percent. 

where b is a characteristic width of the plume (usually the half-
width), and Klt aQ, aM, au and a, are universal constants. 

The above relations are based on the assumption of conser
vation of buoyancy flux in the plume, which is equivalent to 
the assumption of constant a, since heat flux is unconditional
ly conserved. In practice, there may be a significant decrease 
in the buoyancy flux with downstream distance in the near-
field of the source, because of the rapid decrease in 
temperature (and hence a) along the plume axis. But changes 
in buoyancy flux will be very small in the far field (see for ex
ample Table 2). In such cases, it is still reasonable to assume 
that the above relationships will be valid, provided one uses, 
instead of the initial buoyancy flux fy, the local buoyancy flux 
/3(x) defined in equation (8), which can also be written as 

• i : a(x)g(AfO+ut)dy (16) 

It was found adequate in the present studies to assume a con
stant average value a(x) (equal to the value at the plume 
centerline) across the asymptotic plume (x/D>30) without in
troducing substantial error into the evaluation of (3. 

Results and Discussion 

Mean Flow Properties. Table 2 gives a summary of the im
portant measured mean-flow properties. Note that the quan
tities M and (3 will be referred to as "mean-flow" quantities, 
even though they contain turbulent contribution. It is seen 
from Table 2 that except in the downstream part of MSC4 the 
buoyancy flux /3 remains reasonably constant (to within 10 
percent) in the range 30<x/D<60. 

Kinematic Fluxes of Momentum and Mass. The ex
perimental data on the kinematic momentum flux M(x) ob
tained for each of the different flows were found to exhibit, 
within experimental scatter, a linear variation with axial 
distance of the form 

M=A(x-xoM) (17) 

where A is a constant and xoM is the location of the virtual 
origin for each flow. Figure 2(a) shows a plot of the 
momentum-flux data for all the flows in normalized coor
dinates. The axial coordinate x* chosen is suggested by KL. 
Hence, (x*-xlM) is the ratio of the distance (x—xoM) from 
the virtual origin to the typical distance (M//32/3) required for 

the flow to transform to the (asymptotic) plume state. The 
value of (x*-x*M) should therefore be equal to (or 
preferably, sufficiently greater than) 1 to insure that the flow 
has reached the asymptotic-plume state. The scaling used for 
the vertical coordinate M* is suggested by equation (13). It is 
seen from Fig. 2(a) that the flows studied are all in the asymp
totic plume state and that most of the data collapse reasonably 
well on to the straight line 

Pj \ \X~xaM> M* = (M/(32/3) (—i-—\ = a, 
M, 

8V3: oM{x*-

(18) 

in conformity with equation (13). A least-square fit indicates a 
value of 0.74 for the universal constant aM. 

The results for the kinematic mass flux are shown in Fig. 
2(b), plotted in normalized coordinates suggested by equation 
(12). These data also indicate the linear relation as implied by 
this equation, namely 

(19) 

with a value of 0.48 for the universal constant aQ. The values 
of aM and aQ from [9] are 0.72 and 0.57, respectively. A 
growth parameter Cp defined as 

Q 
c * = M»Hx-XoMy" (20) 

along with the Richardson number R, was introduced in [15] 
to characterize the plane buoyant jet. Both Cp and R attain 
universal values in the asymptotic plume. The value of Cp for 
the plume was found from their experiments to be 0.54. Now, 
Cp can be written as 

- h Q 
;][ 

Px/\x-xoM)^ ] _ aQ 
>(x-xoM)M M" 2 

Using the present values of aQ and aM, one gets Cp-
which is in reasonable agreement with the KL data. 

(21) 

• 0.56 

Centerline Velocity. The asymptotic theory suggests that 
the centerline velocity in the plume is constant (equation 14). 
The results for the various plumes are shown in Fig. 3(a). It is 
seen from the figure that the normalized variable Um/p1/3 re
mains nearly constant for all the flows as implied by equation 
(14). There is some scatter in the data but a least-square fit in
dicates an average value of 2.13, with a standard deviation (in
dicated by the vertical bar in the figure) of 0.1. Hence, 

Um = 2.13 (22) 

This value is significantly higher than the value of 1.66 
reported by KL and the value of 1.8 reported by Rouse, Yih, 
and Humphreys [9]. The probable reasons for this difference, 
especially with the former experiments and its implications 
will be discussed later. 

Entrainment Rate. The entrainment coefficient CE for the 
asymptotic plume, can now be computed from the usual 
definition 

CP=-
1 dQ 

Um dx 
(23) 

With aQ = 0.48 and au = 2.13, equation (23) yields: CE = 0.225. 
Ths value is in agreement with the value of about 0.22 ob
served by KL and confirms the earlier conclusions of [14, 17] 
that the entrainment rate in a plume is nearly twice that in an 
isothermal jet (CE for jet = 0.110). 

Decay of Centerline Excess Temperature. It is known that 
the excess temperature in the asymptotic nonbuoyant jet 
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Fig. 3 Variations of centerline velocity and centerline excess 
temperature along the plume. Symbols as in Figs. 1. Uncertainties: x*: 
±0.3; Um: ±0 .1 ; ATm: ±2.8 percent. 

decays as the inverse square root of the distance from the 
origin [16]. The temperature-decay results for the different 
plumes are shown in Fig. 3(b), after shifting the origin (by an 
amount xol) as necessary in each case. This figure 
demonstrates that the axial temperature decays nearly as 
(x* -Xg,)~l as indicated by equation (15). The large departure 
from this trend in the case of the MSC4-data is caused by con
tamination and possibly three dimensional effects already 
referred to. The temperature decay in all the flows can be ap
proximated by the law 

/ (32/3 x /f^V3^ 
ATt=\ m- (x*-x*ot) (24) 

\agATm 

with a, = 0.39. The values for a, reported by KL, and Rouse, 
Yih, and Humphreys are 0.42 and 0.385, respectively, and 
considering experimental uncertanties, these are not too dif
ferent from the present value. It may be noted that for small 
temperature differences, a, can also be taken to be the slope 
corresponding to the decay of the centerline specific-weight 
defect, -Aym. 

Velocity and Temperature Half Widths. If the asymptotic 
plume is selfpreserving, it is reasonable to define, in the usual 
way, half widths bu and b, of the velocity and temperature 
distributions across the plume, as two characteristic length 
scales. They can be obtained directly from the measured 
velocity and temperature distributions. These data were found 
to exhibit very nealy linear growth rates for both bu and b, as 
indicated by equation (11). The results for the ratios, 
bu/(x—xoM) and b,/(x—xot) are shown for all the plumes in 
Figs. 4(a) and 4(b). It may be noted that xoM and xot are the 
same virtual origins as have already been introduced. The data 
show considerable scatter especially in the case of b„ but the 
following average values are obtained for the growth rates 

db„ b„ 

Ku 

dx (x-xoM) 

= 0.11 (with a standard deviation of 0.01) 

db, __ b, 

dx (x-xol) 

= 0.133 (with a standard deviation of 0.014) 

(25) 

(26) 

The unduly large departure, from the general trend, of the 
MSC4 data for Ku is due to reasons already mentioned. The 

s 
X 
U o.i 

0 

x°O.I 
X 

1 | 1 1 

_ -—.^-t^v-V 

- " - 0 - - 1 - — D — D = 
(a) 

— ""I — " G- — 
(b , ^ 

1 1 I I 

Fig. 4 Variations of the spreading rates and Richardson number Sym
bols as in Fig. 1. Uncertainties: x*: ±0.3; rest shown by vertical bars. 

Fig. 5 Velocity and temperature distributions across the plume. Uncer
tainties: rf. ±0.06, U: ±0.015; AT: ±0.015. 

present values of Klu and Ku in reasonable agreement with the 
values (Ku =0.097 and Ku = 0.130) reported by KL. The cor
responding values of Rouse, Yih, and Humphreys [9] are 
Klu = 0.147, Ku = 0.130, but the uncertainty in their velocity 
measurement can be expected to be large. 

Richardson Number. A significant parameter in the study 
of buoyant jets and plumes is the Richardson number. Figure 
4(c) show the variation of the Richardson number R (x) ob
tained from equation (5) using the actual values of Q, M, and 
b computed from the measured distribution of U, u', AT, 
and ut in the various flows. There is considerable scatter in 
the data, because of the uncertainties in the estimation of Q3, 
M3 , and 0. Nevertheless, the data for (x*-x*oM) are seen to 
tend toward an average value of 0.28 with a standard devia
tion of 0.04, as indicated by the vertical bar in the figure. 
Based on this and the other results presented so far, it is 
reasonable to state that all the flows studied have attained 
near-asymptotic state of turbulent plume, within the limits of 
experimental uncertainties. 

Mean Velocity and Temperature Distributions. Profiles of 
the longitudinal mean velocity U and the temperature excess 
AT are shown in Fig. 5 typically for the flow MSC3. In Fig. 
5(a) the distributions are plotted after centering them with 
respect to the axis of the flow in order to correct for any small 
asymmetry in the flow. Also, corrections for the zero shift (in 
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Table 3 Turbulent properties of the asymptotic plume 

u' »d \uv\. \vt\„ 

Note: cl denotes centerline values. The numbers in parentheses represent standard deviations. 

ut„ Pr 

Plane plume 
present experiments) 

Plane plume 
(Kotsovinos, [21]) 

Plane nonbuoyant jet 
at x /D = 40 
(Ramaprian and Chandra-
sekhara, [16]) 

Predictions of plane 
plumes (Malin and Spalding, 
[6]) 

Axisymmetric plume 
(Beuther, Capp, and George, 
[13]) 

um 
0.275 

(0.015) 

0.38 

0.20 

0.27 

u„ 
0.23 

(0.02) 

0.18 

0.22 

Arm 

0.42 
(0.02) 

0.4 ' 

0.18 

0.44 
0.46 

0.4 

u2
m 

0.031 
(0.003) 

0.20 

0.035 
0.031 

0.024 

UmATm 

0.045 
(0.005) 

0.018 

0.048 
0.055 

0.032 

Vm*Tm 

0.064 
(0.006) 

0.26 

0.025 

0.078 
0.078 

0.039-0.07 

0.46-0.70 

0.75 
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Fig. 6 Evolution of the turbulence properties along the centerline. 
Symbols as in Fig. 1. The horizontal line in each case is the expected 
asymptotic behavior. Uncertainties: shown by vertical bars. 

the instrumentation) and ambient contamination have been 
applied (for details see [19]). The profiles show some scatter 
but this is acceptable considering the difficulty in making these 
measurements. All the profiles exhibit near-selfsimilarity for 
x/D > 20. Also shown in these figures are the universal Gaus
sian curves 

- = exp(-0.69r;2) (27) — = exp(- O.6917J); -AL. 
U r v ' " " A T 

While the velocity and temperature distributions are not 
drastically different from Gaussian, it is possible to detect a 
small but consistent difference, especially in the case of the 
temperature distribution. Of course, there is no reason to ex
pect that the velocity or the temperature distribution should be 
exactly Gaussian. 

The lateral mean velocities (V) were also obtained from the 
LDA output. These velocities were, however, very small, be

ing of the order of 0.5-1 cm/s. The uncertainty in their deter
mination was therefore rather large and hence are not 
presented here. 

Turbulence Properties 
Centerline and Maximum Values. The data presented so 

far have shown that all the flows studied have reached an 
asymptotic plume state in respect of the mean flow properties 
at x/D > 30. The axial evolution of the turbulence properties 
of the flow can be seen from Fig. 6. The evolution of these 
properties is shown in terms of the physical distance x/D in
stead of the normalized coordinate x* used earlier. This is 
because the interest here is primarily in the (constant) asymp
totic values of these properties. Furthermore, the evolution 
depends on the details of the turbulence structure in the boun
dary layers at the nozzle exit and not just on the momentum or 
buoyancy flux at the exit. It is seen that the centerline tur
bulence intensities (u'd/Um) and (v'c]/Umax) and the max
imum Reynolds shear stress I uv I max/£^L reach their respective 
asymptotic values (within experimental scatter) by x/D = 40 in 
alUhe flows studied. The thermal properties such as t^/ATm, 
\vt\m„/(.UmATm) and utmax/(UmATm) take longer to 
develop. In fact, the last two properties seem to have barely 
reached their terminal values at x/D = 60. The experimental 
scatter is also larger in this case. It is possible that these 
properties are still evolving at this station. However, judging 
from the data trend, it seems reasonble to assume that most 
of the evolution has already taken place and that they tend to
wards the asymptotic values indicated by the horizontal lines 
in each figure within the uncertainty indicated by the vertical 
bars. Table 3 summarizes these average symptotic values along 
with the standard deviations. In the case ofu',v',uv and t', 
these averages are_based on the results for 40<x/D<60. In 
the case of vt and ut, these are based on the results for 50 <x/ 
D<60. The data from the last two stations of MSC4 have 
been excluded for reasons already mentioned. Table 3 also 
includes the available data from KL for plane plumes, data 
for round plumes from Beuther, Capp, and George [13] and, 
for comparison, the values for a nonbuoyant jet (at x/D = 
40) from Ramaprian and Chandrasekhara [16]. Lastly, the re
sults of recent numerical calculations by Malin and Spalding 
[8] using a complex turbulence model (the so-called k — w 
model) are also presented in the table. It can be seen that 
buoyancy substantially increases the turbulent intensities 
and turbulent transport. For example, there is a 50 percent 
increase in the Reynolds shear stress and about 150 percent 
increase in the turbulent heat fluxes in the plume relative to 
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the nonbuoyant jet. The table also shows that the centerline 
turbulent intensities «,,',, i>c', and t^ are approximately the 
same in plane and axisymmetric plumes. The maximum fluxes 
\uv\r \vt\. and \utImax are, however, about 30-35 
percent higher in the plane plume. One of the two sets of re
sults from Malin and Spalding shown in the table corre
sponds to a constant Prandtl number of 0.5. The other set 
corresponds to a variable Prandtl number. In this case, the 
Prandtl number was assumed to depend on a local buoyancy 
parameter via an empirical algebraic function. It is 
seen that both the numerical solutions predict the correct 
trends though they appear to over-predict the fluxes by 15-
25 percent. The data of [14] agree with the present meas
urements in respect of t'd but differ significantly with re
gard to u'A and utmax. In particular, their value of 0.26 for 
utmax is several times larger than the typical values measured in 
other plume experiments (plane or axisymmetric) or predicted 
by numerical calculations. 

Distributions of the Turbulent Properties Across the 
Plume. For thej>akej>f brevity, only the distributions of the 
transport terms uv, ut and vt across the plume are shown. 
Also, results are shown only for the plume MSC3, as a typical 
example. Similar results were obtained in other cases. The full 
lines are the mean (drawn by eye judgement) through the last 
two measurement stations. Also presented for comparison are 
similar results for an isothermal and a heated but nonbuoyant 
jet from [16]. More detailed results can be found in [18]. 

Reynolds shear stress: The Reynolds shear stress distribu
tions are shown in Fig. 7(a). The data show acceptable sym
metry and no significant scatter. Also the results for the 
isothermal jet agree well with those for the heated jet, thereby 
confirming that there are no significant effects of the refrac
tive index fluctuations on the measurements. The measure
ment technique used can therefore be considered satisfactory. 
The peak value I uv I max/C^ of the shear stress for the isother
mal jet, as measured by the LDA is seen to be about 0.020. 
This is lower (by about 15-20 percent) than the value generally 
obtained by other investigators using hot-wire anemometry. It 
is, however, reasonable to compare the results obtained for 
the isothermal and buoyant flows from the same procedure. It 
is seen from Fig. 7(a) that the data show self similarity especial
ly beyond x/D = 40. The shear stress values are generally much 
higher than those measured in the isothermal/nonbuoyant jet. 
As already mentioned, the measured dimensionless asymptotic 
peak shear stress of about 0.03 in the buoyant jet is about 50 
percent higher than the corresponding value measured in the 
isothermal/nonbuoyant jet. The accuracy of the shear stress 
measurements can be assessed by examining consistency with 
the momentum equation. Assuming selfsimilar distributions 
and asymptotic growth and decay laws for bu, Um, and ATm, 
the momentum_equation can be integrated to obtain the 
distribution of uv across the plume (for details see [19]). This 
calculated distribution is shown by the dashed line in Fig. 7(a). 
It is seen that the shear stress distribution obtained from direct 
measurements is in agreement with the distribution obtained 
indirectly from the momentum equation within the limits of 
experimental uncertainty of about 10 percent. This agreement 
can be taken as a measure of consistency between the tur
bulence measurements and the mean flow measurements. 

Transverse turbulent heat flux: Figure 1(b) shows the 
distributions of vt, which is proportional to the transverse tur
bulent heat flux pcpvt, for the plume MSC3. While these 
distributions evolve more slowly than the shear stress distribu
tions, the data for the last 2 stations exhibit a strong trend 
toward self-similarity. The data for the other plumes gave 
similar results. The figure also shows the distribution of vt in 
the nonbuoyant jet at x/D = 40. It is very clear that the tur-
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bulent heat flux ~vt is spectacularly affected by buoyancy. 
Again, as in the case of the shear stress, it is possible to assess 
the accuracy of the turbulence heat flux measurements in the 
plume by comparing the measured vt distribution obtained 
from direct measurements with that obtained indirectly from 
the thermal energy equation for the plume. Integration of this 
equation under similar assumptions as before and using 
measured velocity and temperature values yields the dashed 
line in Fig. lib). On comparison, it is seen that the level of 
agreement between the direct measurement and that calculated 
from the thermal energy equation is poorer than in the case of 
shear stress. For example, the measured peak value 
\vt\max/(U„,ATm) is on the average about 20 percent lower 
than the calculated value of 0.051. Part of this discrepancy is 
perhaps due to the fact that the flow MSC3 is possibly still 
evolving as is suggested by Fig. 6. It can also be seen from Fig. 
6Jhat the flow MSC3X does indeed exhibit peak values of 
I vt\, more nearly in agreement with the calculated value. The 
recommended asymptotic value of 0.045 is, however, still 
lower than the calculated value by about 10 percent. Some of 
the discrepancy may also arise from the physical separation 
between the points of velocity and temperature measurements. 

Longitudinal heat flux: The distributions of ut (propor
tional to the longitudinal heat flux and for constant a, also 
proportional to the longitudinal turbulent buoyant flux) for 
the plume MSC3 are shown in Fig. 7(c). The profiles are again 
seen to evolve toward a self-similar state. The results for the 
heated nonbuoyant jet at x/£> = 40 are also shown in this 
figure for comparison. Again, ut/(UmATm) shows a drastic 
increase in the plume in comparison with the results for the 
nonbuoyant jet. The area under the ut- curve for MSC3 in Fig. 
7(c) is defined as the kinematic turbulent heat flux integral 
(proportional to the turbulent buoyancy flux intregral). Its 
magnitude is about 0.18, indicating that the total turbulent 
heat flux across the horizontal plane is a significant fraction of 
the total mean heat flux. Similar results were obtained with the 
other plumes also. The corresponding value for the non-
buoyant jet at x/D = 40 is about 0.03 to 0.04. Measurements in 
a round plume [11, 13] also gave results similar to the present 
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measurements. While the effect of buoyancy on \utdy is thus 
very significant, it is not, however, as large as was measured 
by KL (abut 0.5 as against the present value of 0.18 for the 
integral). 

Autocorrelation measurements of u (or v) and t signals 
showed that the integral length scale was several times 
larger than the separation between the points of velocity 
and temperature measurement. It was estimated from these 
measurements that the maximum reduction in the measured 
values of vt (and ut), due to this separation is about 10 per
cent. Hence, the difference between the present heat-flux 
results and those of KL is likely to be due primarily to the 
disagreement between the velocity measurements in the two 
cases. The temperature measurements as well as the two-
dimensionality of the flows appear to be satisfactory in both 
the investigations. 

Detailed Structure of Turbulence 

Turbulent kinetic energy balance: The turbulent kinetic 
energy equation for the plane buoyant jet at any axial location 
x can be written in the following nondimensional form using 
the half-width of the velocity profile and the centerline veloci
ty as the normalizing length and velocity scales respectively 
[19]. 

fr 3<?2/2 bu 

dx Ul, dy J 

uv d(U/Um) 

Ul d(y/bu) ]-[^] 
1 d(vq2) —.> 

•Ul, d(y/bu) 
—=i„L r 1 9(pv/p) 1 , r eb" 1 n 
v«2/2\ + liKiHy7b-r\ + l-wr0 

(28) 

This equation is the same as the usual kinetic energy equation 
for an isothermal jet except for the additional production term 
due to buoyancy (fourth term). Since w2 was not measured in 
the experiments, q2 was obtained from the usual assumption 
(see [20]), 

q2 = (u2 + v2 + w2) = — (u2 + v2) 

Similarly, q2v was assumed to be given by 

q2v= (u2v+v3 + w2v) •• (u2v+v3) 

(29) 

(30) 

These approximations are acceptable for the purpose of com
paring the essential features of jets and plumes. Some of the 
energy balance terms, in equation (28), were measured in the 
plume MSC3. These are presented and compared in Figs. 8(a) 
and 8(b), with the corresponding results for an isothermal jet 
from [16]. As is the usual convention, positive quantities in the 
figure denote a "loss" (or flux out of the control volume) and 
negative quantities denote a "gain" or flux into the control 
volume. It is seen that there is no significant effect of buoyan
cy on the diffusion term (fifth term). On the other hand, it is 
clear that the rate of turbulent energy production by shear 
(third term) is increased significantly by buoyancy. This is a 
direct consequence of the increase in the Reynolds shear stress 
in the plume, since the nondimensional velocity gradient 
[d(U/Um)/d(y/bu)] is very nearly the same in the isothermal 
jet and plume. In addition to this, there is also a direct produc
tion of turbulent energy by buoyancy. The total buoyant pro
duction across the plume can be estimated from Fig. 8(b) to be 
about 30 percent of the energy produced by shear. Previous 
studies by Kotsovinos [14] as well as the spectral and intermit-
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Fig. 8 Comparison of the energy balance terms form equation (26) for 
the plume MSC3 with the isothermal jet of [16]. (a) isothermal jet; (b) 
plume. Uncertainties: y/bu: ± 0.06; Production: ±15 percent; Advection: 
±15 percent; diffusion: ±20 percent; [best estimates]. 

tency results obtained in the present study (but not presented 
in this paper) seem to show that the buoyant contribution oc
curs through the generation of large-scale eddies by gravita
tional disturbances. These are created by the destabilizing ef
fect of the fluctuating buoyancy. The model suggested for this 
process in [21] appears to be reasonable. Buoyancy thus in
creases turbulent energy in two ways, directly by generating 
large-scale disturbances and indirectly by raising the tur
bulence level (and thereby the Reynolds shear stress) which in 
turn extracts more turbulent energy from the mean flow. The 
most striking difference between the jet and plume is with 
regard to the contribution to the turbulent energy balance by 
advection (first two terms in equation (28)). The advection is 
zero at the plume centerline and is very small in the vicinity of 
the centerline as opposed to large and negative values at and 
around the centerline of the isothermal jet. The zero advection 
at the plume centerline is a result of the constancy of Um and 
hence of the turbulent energy (q2/2) which scales with U2, in 
the x-direction. In a jet on the other hand, the turbulent 
energy at the centerline decays as x~'. In fact, a study of the 
continuity requirement would show that the streamlines in the 
plume are convergent everywhere except at the centerline 
where they are parallel. In the jet, the streamlines are con
vergent in the outer regions and divergent in the central part. 
The difference between the advection curves in the jet and 
plume is predominantly due to this difference in their 
streamline patterns. 

Conclusions 

1. The study confirms many of the results from earlier 
studies on the asymptotic two-dimensional plume. For exam
ple, the study has confirmed that all plane buoyant jets reach a 
universal asymptotic state in respect of both the mean and tur-
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bulent flow properties. However, the present mean-flow 
measurements, while indicating the constancy of Um and 
Richardson number R in the asymptotic plume, yield larger 
values for Um (and hence, for R) than measured by Kot-
sovinos and List [15]. Future experiments will hopefully 
resolve this difference. 

2. Buoyancy causes a significant increase in the turbulent 
intensities and turbulent fluxes and transport coefficients. The 
order of increase observed in the present experiments is similar 
to that observed by Beuther, Capp, and George in round 
plumes [13], but significantly smaller than that observed in 
[15]. 

3. The turbulent kinetic energy balance shows increased 
production by Reynolds shear stress and also significant 
buoyant production near the central region of the plume. Pro
duction from these two sources is responsible for the 
sustenance and enhancement of turbulence in the plume. 

Acknowledgment 

The study reported in this paper was supported by the U.S. 
National Science Foundation under Grant Nos. ENG77-22756 
and CME 80-06797. This support is gratefully acknowledged. 

References 

1 Priestly, C. H. B., and Ball, F. K., "Continuous Convection from 
Isolated Source of Heat," Quart. J. Roy. Met. Soc, Vol. 81,1955, pp. 144-157. 

2 Morton, B., Taylor, G. I., and Turner, J. S., "Turbulent Gravitational 
Convection From Maintained and Instantaneous Sources," Proc. Roy. Soc, 
Vol. A234, 1956, pp. 1-23. 

3 Fan, L. N., and Brooks, N. H., "Numerical Solutions of Turbulent 
Buoyant Jet Problems," W. M. Keck Laboratory of Hydraulics and Water 
Resources Report No. KH-R-18, California Institute of Technology, Pasadena, 
1969. 

4 Brooks, N. H., and Koh, R. C. Y., "Discharge of Sewage Effluent From a 
Line Source Into a Stratified Ocean," Eleventh Congress of Int. Assoc, for 
Hydraulic Research, Paper No. 2.19, 1965. 

5 Madni, I. K., and Pletcher, R. H., "Prediction of Turbulent Forced 

Plumes Issuing Vertically Into Stratified or Uniform Ambients," ASME Jour
nal of Heat Transfer, Vol. 99, No. 1, 1976, pp. 99-104. 

6 Chen, C. J., and Rodi, W., "A Mathematical Model For Stratified Tur
bulent Flows and Its Application to Buoyant Jets," Paper C4, 16th Congress of 
the Int. Assoc, of Hyd. Research, Sao Paulo, Brazil, 1975. 

7 Hossain, M. S., and Rodi, W., "A Mathematical Model for Buoyant 
Flows and Its Application to Vertical Buoyant Jets," Turbulent Jets and 
Plumes, ed. W. Rodi, Pergamon Press, Oxford, 1982. 

8 Malin, M. R., and Spalding, D. B., "The Prediction of Turbulent Jets and 
Plumes by Use of the k-u> Model of Turbulence," Physiochemical 
Hydrodynamics, Vol. 5, No. 2, 1984, pp. 153-198. 

9 Rouse, H., and Yih, C. S., and Humphreys, H. W., "Gravitational Con
vection From a Boundary Source," Tellus, Vol. 3, 1952, pp. 201-210. 

10 Lee, S. L., and Emmons, H. W., "A Study of Natural Convection Above 
a Line Fire," J. Fluid Mech., Vol. 11, 1961, pp. 353-368. 

11 Nakagome, H., and Hirata, M., "The Structure of Ambient Diffusion in 
an Axisymmetric Thermal Plume," Proc. Int. Conf. on Heat and Mass 
Transfer, Seminar on Turbulent Buoyant Convection, Dubrovnik, Yugoslavia, 
1976, pp. 361-372. 

12 George, W. K., Alpert, R. L., and Tamanini, F., "Turbulence 
Measurements in an Axisymmetric Buoyant Plume," Int. J. Heat and Mass 
Transfer, Vol. 20, 1977, pp. 1145-1154. 

13 Beuther, P. D., Capp, S. P., and George, W. K., Jr., "Momentum and 
Temperature Balance Measurements in an Axisymmetric Turbulent Plume," 
ASME Paper No. 79-HT-42, Joint ASME/AIChE 18th National Heat Transfer 
Conference, San Diego, California, Aug. 6-8, 1979. 

14 Kotsovinos, N. E., "A Study of the Entrainment and Turbulence in a 
Plane Buoyant Jet," W. M. Keck Laboratory of Hydraulics and Water 
Resources Report No. KH-R-32, California Institute of Technology, Pasadena, 
1975. 

15 Kotsovinos, N. E., and List, E. J., "Plane Turbulent Buoyant Jets. Part I. 
Integral Properties," J. Fluid Mech., Vol. 81, Part 1, 1977, pp. 25-44. 

16 Ramaprian, B. R., and Chandrasekhara, M. S., "LDA Measurements in 
Plane Turbulent Jets," ASME JOURNAL OF FLUIDS ENGINEERING, Vol. 107, 
1985, pp. 264-271. 

17 List, E. J., "Turbulent Jets and Plumes," Ann. Rev. Fluid Mech., Vol. 
14, 1982, pp. 189-212. 

18 Ramaprian, B. R., and Chandrasekhara, M. S., "Study of Plane Tur
bulent Jets and Plumes," IIHR Report No. 257, The Institute of Hydraulic 
Research, University of Iowa, Iowa City, Iowa, 1983. 

19 Chandrasekhara, M. S., "Study of Vertical Plane Turbulent Jets and 
Plumes," PhD thesis, Mechanical Engineering Department, University of Iowa, 
Iowa City, Iowa, 1983. 

20 Bradshaw, P., "The Turbulence Structure of Equilibrium Boundary 
Layers," / . FluiidMech., Vol. 29, 1967, pp. 625-645. 

21 Kotsovinos, N. E., "Plane Turbulent Buoyant Jets. Part 2. Turbulence 
Structure," J. Fluid Mech., Vol. 81, Part 1, 1977, pp. 45-62. 

Announcement 
Fluid Mechanics Open Forum (And Social Hour) 

An Open Forum consisting of five minute presentations of previously unreported works in progress and discussion will be 
sponsored by the Fluid Mechanics Committee at the 1989 ASME Fluids Engineering Conference in San Diego, California. In 
order to promote an informal atmosphere conducive to the free interchange of ideas and unfettered discussion, the Commit
tee will host a Social Hour in conjunction with the Open Forum featuring, among other attractions, FREE soft drinks and 
pretzels! (Beer will be available for a nominal fee.) The session will be held on Tuesday, July 10, 1989 from four to six in the 
afternoon. 

Contributions are encouraged from both experimental and analytical investigators of all aspects of fluid mechanics. A 
brief abstract along with the author's name and affiliation should be submitted to the organizers listed below not later than 
5:00 pm on Monday, July 10, 1989, the day prior to the session. Additional details of concern to prospective participants will 
be available at the Registration Desk. 

Organizers: 
Prof. James A. Miller 
Department of Aeronautics 
Code 67 MO 
Naval Postgraduate School 
Monterey, CA 93943 
(408) 646-2897 

Dr. David J. Norton 
Houston Area Research Center 
2202 Timberlock Place 
The Woodlands, TX 77381 
(713) 367-1348 

Journal of Fluids Engineering MARCH 1989, Vol. 111/77 

Downloaded 02 Jun 2010 to 171.66.16.94. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



H. Haniu 
Associate Professor, 

Department of Mechanical Engineering, 
Kitami Institute of Technology, 

Hokkaido, Japan 

B. R. Ramaprian 
Professor, 

Department of Mechanical and Materials 
Engineering, 

Washington State University, 
Pullman, Wash. 

Mem. ASME 

Studies on Two-Dimensiooal 
Curved Nonbuoyant Jets in Cross 

low 
An experimental study of two-dimensional, curved, heated {but essentially non-
buoyant) jets is reported. The experiments were conducted in a hydraulic flume in 
which a curved jet was produced by injecting a plane jet of slightly heated water ver
tically upwards in to a small cross flow. The data presented include mean and tur
bulent flow properties obtained from the measurement of instantaneous velocity 
and temperature, using two-component Laser Doppler Anemometry (LDA) and 
microresistance thermometry. The measurements extended over the near-to-
intermediate field, namely, y/D<60, where y is the distance along the flume andD 
is the width of the jet at the exit. The study has demonstrated the stabilizing effects 
of streamline curvature in the inner (lower) portion and the destabilizing effects of 
curvature and the coflowing ambient in the outer (upper) portion of the curved jet 
in cross flow. The quantitative effects on the mean and turbulent properties are 
presented and discussed in this paper. 

Introduction 
Curved jets in cross flow are encountered in many en

vironmental flow problems. Some examples are cooling tower 
plumes, smoke stack exhaust, thermal discharges to rivers, 
vents of liquified natural gas carriers, etc. These flows are 
generally three-dimensional and buoyancy driven. However, 
in certain regions of the flow or under certain conditions, 
three-dimensional and buoyancy effects may not be signifi
cant. Traditionally, buoyant jets in cross flow have been 
predicted (with moderate success), using empirical relations 
for plume rise, dilution, etc., or by using integral methods in 
combination with similarity and entrainment assumptions [1, 
2]. While these methods are still being studied [3], the present 
trend is increasingly toward the use of differential methods 
based on complex models of turbulence [4, 5]. Streamline cur
vature and buoyancy are two important aspects that require 
careful consideration in the development of such turbulence 
models. This is especially so for the correct prediction of the 
near-to-intermediate field of these flows (say, within 100 
characteristic diameters from the source), which is often of 
practical interest. A third aspect which may also have some 
significance in turbulence modeling is the presence of a mov
ing stream external to the jet. The study of the first and third 
aspects is described in this paper. Studies on the effects of 
buoyancy are reported separately [6]. 

The effect of streamline curvature on turbulent boundary 
layers has been studied extensively over the last 20 years. In 
fact, Bradshaw [7] invoked the concept of an analogy between 
streamline curvature and buoyancy to derive the so-called 
"curvature Richardson numbers" that characterize curvature 
effects in a turbulent shear flow. It is now known from his 
work and the others following it [8-10] that the effect of 
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streamline curvature is such as to increase the turbulent shear 
stress in a curved shear layer, when the local curvature 
Richardson number R. defined as 

R, 
2U/r 

(dU/dn + U/r) 
(1) 

is negative. The shear stress is decreased if this quantity is 
positive. In the first case, the curvature is said to be destabiliz
ing and in the second case, it is said to be stabilizing. It is easily 
seen from Fig. \(a) that in the case of a jet in cross flow, the 
outer part of the jet is destabilized while the inner part is 
stabilized. Irwin and Smith [11] demonstrated the importance 
of extra production terms appearing in the Reynolds stress 
equation for curved flows. Sawyer [12] in his study of reat
taching jets, showed, from a first order analysis, that the dif
ference between the entrainment rates in the outer and inner 
portions of the jet is proportional to the ratio of shear layer 
thickness to the radius of curvature. Castro and Bradshaw [13] 
studied curvature effects on a curved mixing layer and the 
details downstream, as the flow relaxed back from curvature 
effects. The Reynolds stresses were found in this case, to 
decrease in the region of large curvature, then overshoot the 
self-preserving values before finally relaxing to the original 
values. The stable shear layer studied by them corresponds 
roughly to the outer part of a convexly curved boundary layer 
or the inner portion of a curved jet in cross flow. The dif
ferences from the curved jet, however, are in the curvature 
history imposed and the absence of recirculation (flow rever
sal) in the inner portion of the shear layer. More important is 
the fact that the curved mixing layer has no counterpart of the 
unstable outer part of the curved jet. Pelfrey and Liburdy [14] 
studied a two-dimensional curved jet, in which streamline cur
vature was introduced by discharging the jet a small distance 
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Fig. 1 (a) Flow configuration studied; (b) Two dimensionality check, (z 
is the spanwise coordinate), x/D = 40.94. 
Uncertainties: n/D: ±0.005; U/Uj-. ±0.001. 

away from a parallel wall. There was no external flow in their 
experiment except for the recirculation induced by the jet 
itself. They have reported some mean and turbulent flow pro
perties in this offset jet, which were measured using a single-
component LDA. These limited data indicate the stabilizing 
effects of curvature on the inner side of the curved jet and the 
destabilizing effects on the outer side. 

In the case of a jet in cross flow, the external flow on the 
outer side of the curved jet has a finite velocity component 
along the axis of the jet (s-direction). This s-component "edge 
velocity" or "freestream velocity" may be particularly large 
along the outer edge of the jet. The s-component velocity at 

the inner edge may be negative (in the presence of recircula
tion) though its magnitude is generally smaller than that at the 
outer edge. Everitt and Robins [15] studied the effect of exter
nal flow parallel to a plane jet. When the centerline velocity is 
large with respect to the freestream velocity, the flow (often 
known as a "strong jet") is similar to that of a jet in still air 
and is approximately self preserving. However, at larger 
freestream velocities, the jet is not self-preserving except in the 
other extreme case of the freestream velocity being very nearly 
equal to the centerline velocity. Such a jet is known as a "weak 
jet" and behaves very much similar to an asymptotic small-
defect wake. In the intermediate state, the flow develops slow
ly due to the presence of the moving stream, and the spreading 
rate is not constant and is less than that of a jet in still air. The 
rms turbulent velocity at the centerline of the jet, normalized 
with respect to the difference between the local maximum 
velocity and the external flow velocity, increases as the exter
nal flow velocity increases. In a jet in cross flow, additional 
complexities are introduced by the facts that the edge velocity 
changes in the s-direction thereby introducing nonequilibrium 
effects and that the edge velocity is negative in the lower part 
of the jet. 

One of the main objectives of the present experimental 
study was to obtain detailed data necessary for the testing and 
development of turbulence models and calculation procedures 
for jets in cross flow. In order to achieve this objective with a 
minimum of experimental complexity, it was decided to keep 
the flow configuration as simple as possible. Hence two-
dimensional flows with only mild recirculation behind the jet 
were selected for the study. The jets were nonbuoyant but 
were characterized by significant streamline curvature and 
variation of external flow velocity parallel to the jet centerline. 
By varying the ratio of jet velocity to crossflow velocity, it was 
possible to vary the relative magnitudes of the curvature and 
external-flow effects. Resuls from such tests have been used, 
with some success, to separate the effects of curvature from 
those of the external flow. 

Experimental Details 

The Apparatus and Instrumentation. The experiments 
were conducted in a hydraulic flume, 7.0 m long x 45 cm wide 
X 75 cm deep, with transparent side walls. The freestream tur-

b 
CE 

D 
E 
g 

H 

h 

Hu 

K 
k 

L 
M 

n 

= half width 
= entrainment coefficient 

(defined by equation (15)) 
= jet width at exit 
= entrainment rate dQ/ds 
= acceleration due to 

gravity 
= total kinematic heat flux 

in the ^-direction 
= turbulent heat flux in the 

5-direction 
= height of the trajectory 

above the origin 

= u/ua = curvature of the 
trajectory 

= momentum length scale 
(defined by equation (4)) 

= kinematic momentum 
flux 

= coordinate normal to the 
trajectory 

Q 
R 

Rb 

Re 

Re 

r 

s 

T 
AT 

t 

U 
u 

V 

kinematic mass flux 
radius of curvature of the 
trajectory 
buoyancy Richardson 
number 
local curvature Richard
son number 
global curvature Richard
son number 
local radius of curvature 
of the streamline 
coordinate along the tra
jectory of the jet 
temperature 
temperature excess above 
the ambient 
turbulent fluctuation in 
temperature 
s-component velocity 
s-component turbulent 
velocity 
rt-component velocity 

v = ^-component turbulent 
velocity 

x = vertical coordinate 
y = horizontal (downwind) 

coordinate 
z = spanwise coordinate 
p = density 

Ap = p-pa 

Subscripts 
a = ambient 
e = edge of jet 
j = jet exit 

m = maximum value 
t = refers to temperature 
u = refers to velocity 
1 = upper part of jet 
2 = lower part of jet 

Other Symbols 
overbar = time average 

prime = rms value 
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bulence intensity in the flume is typically 1 percent at a veloc
ity of 20 cm/s. The hot-water jet was introduced vertically 
from a rectangular nozzle 250 mm (span) x 5 mm (width) 
located near the floor of the flume. A small flow was main
tained along the flume to simulate the "cross flow." The flow 
was confined between two false side walls made of plexiglas 
and spaced 250 mm apart. These walls, which extended from 
800 mm upstream to 600 mm downstream of the jet injection 
slot served to limit the upstream boundary layer thickness to 

• less than 5 cm and improve the two-dimensionality of the 
flow. Likewise, the nozzle assembly was located flush with a 
false bottom extending 300 mm upstream of the injection slot. 
This arrangement served to limit the bottom wall boundary 
layer to less than 2 cm. The nozzle assembly and the hot water 
system are the same as those used for the vertical-jet studies 
described in [16]. More details of the apparatus can also be 
found in [17]. Figure 1(a) shows the flow configuration 
studied and the nomenclature used in the paper to describe the 
flow. 

A two-component, frequency-shifted LDA, powered by a 
15 mW helium-neon laser was used for the measurement of in
stantaneous velocity in the flow. The LDA had an effective 
spatial resolution of about 1.1 mm in the spanwise direction 
and 0.1 mm in the other two directions. Two Disa Type 55R11 
hot-film sensors were used (one in the flow and the other in the 
ambient) differentially in a "cold-film" anemometer circuit to 
measure instantaneous temperature differences. The LDA and 
the temperature probe were both mounted on a three-
dimensional traverse that could be located to an accuracy of 
0.025 mm. The cold-film sensor in the flow was located within 
1 mm downstream of the point of velocity measurement. The 
error introduced by this spatial separation in to the determina
tion of the correlations ut and vt is estimated to be less than 10 
percent (see [16]). Velocity traverses were made across the 
curved jet at several spanwise stations. These measurements 
indicated that the flow was acceptably two-dimensional (to 
within 5 percent in mean velocities) over the central half of the 
span. This is seen typically from Fig. 1(b) which shows the 
distribution of the streamwise velocity U across the jet at 
x/D<*40. All the measurements reported in this paper were 
made in this central region of two-dimensional flow. 

Experimental Conditions and Procedures. Three main (M 
series) flow configurations were studied. The average initial 
conditions for these flows are given in Table 1. 

It is seen that flow 301000M is an isothermal flow. In the 
other two flows, the magnitude of the exit buoyancy Richard
son number RbJ (defined by RbJ, = [(ApjgD)/(pa Lfj)] is very 
small. These jets are therefore essentially nonbuoyant, with 
heat simply playing the role of a passive scalar. In addition, 
some results are presented from a series of repeated ex
periments (D series) in which the flow conditions were 
nominally the same as in the main experiments. The nominal 
jet exit velocity (based on the measured flow rate and the area 
of the slot) was 30 cm/s in all the experiments. This cor
responds to an exit Reynolds number of about 1500 at which 
the flow remains fully turbulent over the region of measure
ment as seen from previous studies [16]. The exact velocity 
distribution at the exit could not be measured because of the 
limitations imposed by the instrumentation. However, 
because of the large (8:1) flow contraction through the nozzle 
immediately before the exit, the velocity can be expected to 
have a nearly top-hat distribution at the exit. 

Table 1 Experimental conditions 
Jet no. 

301000M 
300905M 
300605M 

uj 
(cm/s) 

30.0 
30.0 
30.0 

Ua 
(cm/s) 

3.0 
3.3 
5.0 

K 

10.0 
09.0 
06.0 

A7)CQ 

0.0 
6.7 
5.7 

\Rbj\ 

0.0000 
0.0009 
0.0009 

T 
1 a 

24.9 
21.3 
26.4 
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Cross flow velocities were uniform to within ± 2 percent in 
the absence of the jet. At velocity ratios K greater than 10, the 
jet was found to bend too quickly. Preliminary tests showed 
that at large inclinations of the jet to the vertical, unstable 
stratification in the flume caused secondary flows to be 
generated, destroying the two-dimensionality of the flow. It 
was found that the inclination of the jet had to be kept within 
30 degrees to the vertical in order that the flow could be main
tained acceptably two-dimensional (to within 5 percent in 
mean velocity). This condition was satisfied up to the last 
measurement station (at s/D » 5 5) in all the tests. Also, the last 
station was about 60 D below the free surface. Previous tests 
[16] suggest that there are no significant free-surface effects on 
the flow at this depth. 

The cross-sectional planes and locations of measurements at 
each cross section were selected after ascertaining the approx
imate boundaries of the curved jet from preliminary dye 
visualization experiments. In this manner, the measurement 
locations could be distributed efficiently over the flow. The 
measurements covered the range 0<s/D<60. An HP 1000 
minicomputer and a Preston analog-to-digital converter were 
used for the acquisition and processing of the experimental 
data. The flow properties (which included the mean and tur
bulent quantities) were first obtained in the flume coordinates 
(x,y). Then, the position of maximum velocity and the direc
tion of the tangent to the jet centerline (which is the locus of 
the maximum velocity points) were obtained graphically from 
the mean-flow data. All the results calculated in the x—y coor
dinates were then transformed into the jet coordinates (s, «). 
Only selected data from this extensive set of experiments are 
presented and discussed in this paper. Full details of the ex
periments and a complete set of tabulated experimental data 
are reported in [17]. The data are also available on magnetic 
tape. Based on previous experience with this facility and in
strumentation [16, 18], the following are the experimental 
uncertainty estimates of the flow properties actually 
measured. U: ±2.5mm/s, V:_±1.5 mm/s, AT: ±0.2°C, u', 
v', t': ±5 percent, uv, ut, vt: ±10 percent. Uncertainty 
estimates of the results presented in the various figures were 
obtained from an error-propagation analysis and are indicated 
on each figure. 

Results 
Trajectories. Trajectories of maximum velocity points for 

several flow conditions are shown in Fig. 2(a). Fourth order 
polynomials were fitted to the trajectory data in x—y coor
dinates to calculate the distance along the jet s, and the cur
vature k of the trajectory. These results are presented in Fig. 
2(b). Note that while the curvatures of the three jet trajectories 
are not very different from one another beyond s/D = 40, the 
trajectory of the jet 300605M has the largest curvature and 
that of the jet 301000M the least in the region 0<5/Z»<40. 

Except very near the source, and in the absence of signifi
cant buoyancy effects, the jet behavior can be expected to de
pend only on its initial (kinematic) momentum flux Mj (de
fined by Mj = UjD), and the cross flow velocity Ua [19]. One 
can then write, for the asymptotic rise of the jet, 

f(Hu,y,Ua,Mj) = 0 (2) 
Dimensional analysis yields 

Introducing a momentum length scale lm defined as 
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Fig. 2 Trajectory of the maximum velocity point and its curvature in the 
different flows studied. 
Uncertainties: y/D: ±0.005; x/D: ±0.005; s/D: ±0.070; kD: ±0.001. 

one gets 

3L ii) (5) 

The experimental results for the trajectory are presented in 
Fig. 3(a) for different nonbuoyant jets. It is seen that all the 
data with the exception of those very near the exit approx
imately fall on the curve 

T^(f)' (6) 

indicating agreement with equation (5). 
The location of the temperature maximum in the case of the 

heated nonbuoyant jet can be obtained from the measured 
mean temperature distributions. The trajectories of the max
imum temperature points for the two heated jets studied are 
shown in Fig. 3(b). It is seen that all the values of r\tm are 
positive which means that in all cross-sectional planes, the 
point of maximum temperature in the jet lies below the point 
of maximum velocity. 

Spreading Rate. The half width bu of a symmetrical jet is 
defined as the distance from the center of the jet to the loca
tion where U= (Um + Ue)/2. In the case of the jet issuing into 
still surroundings (Ue = 0), it is known that buocs. In the 
presence of cross flow, the jet is generally asymmetrical about 
thes-axis. One can define, in this case, half-widths buX and bul 
for the upper and lower parts of the flow, based on 
(Um + Uel)/2 and (Um + Ue2)/2 points, respectively. Note that 
not only Uel jt Ue2^0, but also Uel and Ue2, in general, vary 
along the ^-direction. As will be shown later, the curvature of 
the jet trajectory produces stronger mixing in the upper part of 
the jet and reduced mixing in the lower part. This should result 
in a larger growth rate of the upper part and a smaller growth 
rate of the lower part. However, the presence of finite edge 
velocity (coflowing on the upper part and contraflowing on 
the lower) counteracts these trends. The spreading-rate data 
shown in Fig. 4(a) for the three nonbuoyant jets reflect the 
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Fig. 3 (a) Correlation of the jet-rise with momentum length scale; (b) 
Trajectory of the maximum-temperature point relative to that of the 
maximum-velocity point. 
Uncertainties: y/Lm: ±5 percent; Hu/Im: ±5 percent; s/D: ±0.070; ntmID: 
±0.1. 

results of these interactions. The figure also shows the straight 
line of slope 0.11 corresponding to the asymptotic spreading 
rate of a two-dimensional vertical isothermal jet [16]. It is seen 
that the jet 300605M with the strongest initial curvature shows 
the largest spreading rate for the lower part beyond the 5th 
station. This is due to the presence of the strongest recircula
tion below this jet. The mildly curved isothermal jet 301000M 
jet behaves almost like a vertical jet, while the jet 300905M of 
"intermediate" initial curvature exhibits an intermediate 
trend. It is also seen from the figure that the overall average 
spreading rate of the curved jet, based on bu = (bui + bu2)/2, is 
slightly (but not significantly) larger than that of an isothermal 
vertical jet and increases with curvature. Pelfrey and Liburdy 
[14] found the average spreading rate of curved offset jets (in 
the absence of an imposed external flow) to be nearly the same 
as that of a straight jet. 

The temperature half widths bn and ba (defined as the 
distance from the location of maximum temperature excess to 
the locations of half the maximum temperature excess in the 
upper and lower parts of the jet) are presented in Fig. 4(b) for 
the two heated nonbuoyant jets. The broken lines in Fig. 4(b) 
have a slope of 0.154, which is the "average" value for ver
tical nonbuoyant jets from a number of experiments [16]. 
From the figure, it is seen that the temperature half widths in 
the curved nonbuoyant jet are affected approximately in the 
same way as velocity half widths. The average half width in
creases faster in the more strongly curved jet. The lower part 
of the temperature profile spreads faster as recirculation 
becomes stronger. 

Mass Flux and Entrainment. The mass flux across any 
plane normal to the axis of the nonbuoyant jet can be obtained 
by integrating the velocity profiles across the jet, as 
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Fig. 4 Spreading rates of velocity and temperatures half-Widths. 
Uncertainties: s/D: ±0.070; bu/D: ±0.1. 

f ne2{s) 

Q=\ 
J "el(s) 

Udn (7) 

However, since the s-component velocity does not go to zero 
at the "edges" of the jet, the limits of integration, nel and ne2 

have to be carefully defined. In the present case, it was found 
that beyond In I = 3bu, the n-component velocity (entrainment 
velocity) was practically constant on both sides of the jet. 
Hence for the calculation of entrainment, we define 
\nel I = \ne21 =3/b„. It was also found from measurements in 

the range 5<s/£><60 that 

D D 
\»QA2(s/D) (8) 

The integral continuity equation for the curved jet can be 
shown to be 

dQ_ 

ds 

•0+•£• )" . - ( ' •* ) ' ' . (9) 

or, using equation (8), one gets 

dQ 
ds 

= 0A2Uel+0A2Ue2 + ( l +-^L) VA - ( l + ^ ) Vel (10) 

At very large distances from the jet exit, \nei/H\ and \ne2/R) 
will be small compared with unity and Uel and Ue2 will 
become nearly constant. Also, if the cross flow velocity Ua is 
sufficiently large, 0.42({/el + Ue2) will be much larger than the 
last two terms in equation (10). Thus at asymptotically large 
s/D, the mass flux will follow the relation 

Q<*s (11) 

Equation (11) indeed represents the mass flux increase in a 
"weak jet" i.e., a jet in cross flowing ambient with 

< < 1 (12) 

At the other extreme, if the cross flow is very small compared 
with the jet velocity (as for s/D—0), the jet rises nearly ver
tically. In this case, the mass flux follows the well known 
isothermal vertical-jet ("strong" jet) relation [16], namely 

goes1 '2 (13) 

The curved nonbuoyant jet can be expected to behave 
somewhat in between these two asymptotic trends. Data on 
the two curved jets 300905M and 300605M are presented in 
Fig. 5(a). It can be seen from the figure that both the jets tend 
toward the half-power, strong-jet relation (equation (13)) at 
small values of s/D and the linear, weak-jet relation (equation 
(11)) for larger s/D. The data for the vertical jet (from [16]) 
are also shown in Fig. 5(a) by the dashed line. The comparison 
shows a larger entrainment rate in the curved jets. As one can 
see from equation (9), the increase of entrainment is not only 
due to the increase in the contribution from the terms contain
ing Vei and Ve2 but also due to the presence of the first two 
terms representing the expansion of the jet boundary. The 
mass fluxes Ql and Q2 through the outer and inner portions of 
the jet are presented in Figs. 5(b) and 5(c). It is seen that the in
ner portion of the jet behaves somewhat like a strong jet while 
the outer portion behaves like a weak jet. Similar conclusions 
were reached from a study of the momentum flux also. Details 
of this analysis are described in [17]. 

In vertical jets (in still surroundings), the entrainment rate is 
simply the algebraic sum of the entrainment velocities at the 
two edges of the jet, i.e., 

E= 
dQ 
ds 

= V.,-VM = 2V., (14) 

since Vel = - Vel. In the case of jets in cross flow, it is given by 
equation (10). The edge velocities UeX, Ue2, Vel, Ve2 can be 
different from each other in sign and/or magnitude. This was 
indeed found to be the case in the two flows studied. It was 
also found that the jets were significantly asymmetric, with 
Uel > Ue2. The entrainment rate is therefore different on the 
two sides of the jet. The overall entrainment rate dQ/ds can, 
however, be obtained from the measured rate of change of the 
kinematic mass flux along the jet shown in Fig. 5(a). The 
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results are shown in Fig. 6 where the nondimensional entrain
ment coefficient CE defined by 

CK = 
dQ/ds 

(15) 

is plotted. It can be seen that there is a significant increase in 
the entrainment rate compared with that of a vertical jet in still 
surroundings, for which C£ = 0.12 (see [16]). The entrainment 
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rates (based on ne = ± 3bu) obtained separately for the upper 
and lower portion of the jet from the respective mass fluxes Qx 
and Q2 are also shown in Fig. 6. The respective entrainment 
coefficients are defined as 

Cm=2-

•-E2-

dQj/ds 

(Um-Uel) 

dQ2/ds 
'(Um~Ue2) 

(16) 

(17) 

The effect of cross flow Ua on the entrainment rate is very 
clearly seen. The entrainment rate in the upper part of the jet 
is increased due to the presence of positive edge velocity while, 
in the lower part, the jet behaves more nearly like a vertical 
jet. 

Mean Velocity and Temperature Distributions. Typical s1-
component mean velocity profiles are presented in Fig. 7 for 
the jet with the strongest cross flow, namely 300605M. In this 
figure, Um has been used as the velocity scale for normaliza
tion. The cross-stream coordinate n is normalized using bul in 
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the outer part and bu2 in the inner part. It is clearly seen that 
there is a positive s-component edge velocity along the outer 
edge of the jet and a smaller negative edge velocity due to 
recirculation at the inner edge. The distributions at different 
axial locations do not exhibit self-similarity in the coordinates 
chosen. In fact, a strong evolutionary trend is observed 
especially near the outer edge. Everitt and Robins [15] ob
served that jets in a coflowing ambient exhibit self-similarity 
in the profiles of the excess mean velocity [U~ Ue/Um — Ue]. 
The present data were also found to exhibit a similar trend as 
seen from the typical results for the jet in Fig. 8(a). In this 
figure, the data are presented as excess mean velocity 
[U- Uel/Um - Uel] for the outer part and [U- Ue2/Um - Ue2] 
for the inner part. The n-coordinate is normalized as before 
using the appropriate half width on each side. It is seen that 
the distributions are fairly symmetric, self-similar and very 
nearly Gaussian (shown by the solid line). 

Figure 8(6) shows typical excess temperature distributions 
in the same nonbuoyant jet. One can see from this figure that 
all the temperature profiles are shifted toward the right side of 
the n = 0 axis (i.e., toward the lower side of the jet). Also, 
substantial excess temperature can be observed beyond the in
ner edge of the jet, which is a result of the recirculation below 
the jet. The recirculation and reentrainment of the jet fluid, in 
fact, caused the excess temperature ATe2 at the inner edge to 
remain nearly constant at all s/D, rather than scale with the 
local maximum excess temperature ATm. The velocity and 
temperature distributions in the other jets with smaller cross 
flow were qualitatively similar. The evolution of the flow as 
well as the recirculation and reentrainment phenomena were, 
however, less pronounced in those cases. 

Turbulence Properties. Turbulence measurements were 
made in each of the three jets 301000M, 300905M and 
300605M. Of these flows, the first two with nearly the same 
cross-flow velocity ratios (namely 10 and 9), were found to ex
hibit almost similar turbulence properties. Hence, only the 

data on the second and third flows will be presented and 
discussed here. These two jets had nearly the same streamline 
curvature in the region 10 <x/D< 60. The cross flow velocities 
in the jet 300905M were, however, much smaller than those in 
the jet 300605M. The influence of the ratio Ue/Um and its 
variation along the jet (nonequilibrium effect) was thus dif
ferent in these two flows. The severity of streamline curvature 
can conveniently be characterized by a global curvature 
Richardson number which can be defined, for each side of the 
jet as follows: 

Rcl=2kbul; Rc2=-2kbu2 (18) 
These definitions follow from equation (1) if one assumes that 
\dU/dn I ~ U/bu and bu < <R. Both the heated jets exhibited 

Rc values of the order of ±0.1 over the most part (note that k 
is negative). This value is very similar to that observed in the 
curved-jet experiments of [14]. 

The distributions of turbulent shear stress in the two jets are 
presented in Fig. 9(a) and 9(b). The full line drawn through the 
data at x/D = 40.34 shows the trend. The dotted line cor
responds to the distribution in a vertical jet and is taken from 
[16], Since the dimensionless maximum shear stress for a ver
tical jet is approximately 0.022, an appreciable enhancement 
of the shear stress in the outer portion and a slight reduction in 
this stress in the inner portion can be observed. Since both the 
curved jets (with 0<Ue<0AUm) can be considered to be 
"strong jets," the finite velocity of the free stream alone 
should not cause any significant change in the turbulence 
structure of these jets. Thus, considering a typical location 
such as s/D ~ 40, one can regard the shaded regions in these 
figures to represent, in principle, the combined effect of non-
equilibrium (variation of Ue/Um) and streamline curvature. 
While it is difficult to isolate precisely their individual effects 
from these results, it is reasonable to conclude that, since the 
edge velocities are very small in magnitude on the inner side of 
these jets, any change from the vertical-jet behavior in this 
side is due largely to the curvature effects. The same statement 
can be made (though with a little less certainty) also with 
respect to the outer portion of the jet 300905M (which has a 
smaller cross flow), in view of the relatively small edge 
velocities (Uel/Uj <0.1) observed in that case. One can thus 
speculate that the shaded region in the inner portion represents 
approximately the stabilizing effect of curvature in both the 
jets, whereas the shaded region in the outer portion represents 
the destabilizing curvature effect in the case of the jet 
300905M. Similar observations were made from the «' and v' 
distributions also. Hence, if the present estimates are correct, 
it seems that while the effect of streamline curvature on tur
bulence in curved nonbuoyant jets is significant, it is not as 
large as has been observed in earlier boundary-layer and free-
shear-flow studies [8, 9, 10, 13]. This is presumably due to the 
existence of streamline curvature effects of opposite sign in the 
two parts of the curved jet—a feature not present in any of the 
other curvature studies, cited above. 

The thermal properties of the curved jet in cross flow are 
shown typically for the jet 300605M, in Fig. 10. Note that, as 
already mentioned, heat essentially plays the role of a passive 
scalar in this flow. Again, the data for s/D = 40.34 are joined 
by a full line to show the trend. A larger rms intensity of 
temperature fluctuations is seen in the outer portion compared 
to the inner portion (Fig. 10(a)). Also one can see from the 
figure that the temperature fluctuations evolve continuously 
along the jet in both the outer and inner portions of the jets. 
The distributions are similar to those observed in plane ver
tical heated jets except for the asymmetry about the jet axis. A 
comparison of the maximum values of t'/ATm in the outer 
and inner parts of this jet with the value of 0.28 obtained in a 
vertical jet [16] leads to similar conclusions regarding cur
vature effects, as were reached from the study of the velocity 
fluctuations. 
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The distributions of ~vt and «if, respectively proportional to 
the n- and s-component of the turbulent heat flux are shown in 
Figs. 10(6), (c). It is seen that beyond s/D= 10, these quan
tities are significantly larger in the outer portion than in the in
ner portion. Also, comparing with the maximum values of 
~vt/UmATm and iit/UmATm in the inner part of the jet with 
those reported in [16] for a vertical jet, namely 0.018 and 
0.024, respectively, it can once again be concluded that the ef
fect of curvature alone on the curved jet is not spectacularly 

large. The large effect observed in the outer portion should 
again be interpreted as being due primarily to the none-
quilibrium of the flow. Results consistent with the above con
clusions were obtained from the jet 300905M also. 

The total (kinematic) s-component heat flux //across the jet 
is composed of the mean heat flux H and the turbulent heat 
flux h, and can be obtained from integrating the measured 
distributions of U, AT and ut, respectively, across the jet. The 
fraction of the total heat flux carried by the outer portion, 
Hx/H is shown in Fig. 11(a). This value is around 0.5 
everywhere and indicates no significant difference between the 
outer and inner portions of the jet. The different heat flux 
ratios namely, hx/Hx, h2/H2 and h/H are presented in Fig. 
11(6). It is seen that a larger fraction of the total heat flux is 
carried as turbulent heat flux (approximately 5.5 percent of 
H{) in the outer portion compared with the inner portion (4 
percent of Hx). The overall value of h/H for the jet lies in be
tween the values for the outer and inner portions. This value is 
about 4.5 percent which is slightly higher than the value (3-4 
percent) reported in [16] for vertical nonbuoyant jets. From 
the experimental data obtained, it is possible to estimate the 
eddy transport coefficients for momentum and heat, and 
hence the turbulent Prandtl number. The turbulent Prandtl 
number estimated in this manner was found to have a typical 
value of 0.9 in the outer portion and 0.5 in the inner portion of 
the curved jet, as compared to a value of about 0.75 in a ver
tical jet. 

Conclusions 

The experimental study reported in this paper has lead to 
the following conclusions. 

1. The rise of the two-dimensional nonbuoyant jet in cross 
flow is proportional to y0M in the region 0.1<>'//OT<30 and 
the trajectory (of the point of velocity maximum) is described 
by equation (6). The maximum temperature in the jet occurs 
slightly below the point of maximum velocity. This is due to 
the recirculation present in the lower part of the jet. 

2. The overall width of the curved jet increases at a slightly 
faster rate than that of a vertical jet. 

3. There is a substantial increase in the entrainment rate, 
turbulent intensities and turbulent transport in the outer part 
of the nonbuoyant curved jet. This is predominantly due to 
the presence of a continuously evolving, coflowing edge 
velocity, and to a lesser extent, due to the destablizing effect of 
streamline curvature. 

4. There is a small reduction in the entrainment rate and 
turbulent properties in the inner portion of the jet. Since the 
edge velocities in this part are very small, this reduction is due 
primarily to the stabilizing effect of streamline curvature. 

5. The curvature effects in this flow are substantially 
smaller than those observed in earlier studies on curved boun
dary layers and free shear flows characterized by a single sign 
of curvature Richardson number. This is presumably due to 
the opposing effect of curvature on the two sides of the curved 
jet in cross flow. 
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The Effect of Inlet Turbulence 
Intensity on the Reattachment 
Process Over a Backward-Facing 
Step 
Behavior of a separated shear layer over a backward-facing step and its reattach
ment is presented when a two-dimensional cavity or rod is installed upstream of the 
step in order to change local turbulence intensity in addition to grid turbulence in the 
free-stream. The reattachment length has a strong negative correlation with max
imum turbulence intensity near the wall at the separation point. Turbulence in the 
entrainment region immediately downstream of the step plays an important role in 
determining the reattachment length. 

Introduction 
A backward-facing step flow has been an important subject 

of concern as a model of separated flows. Numerous studies 
on a backward-facing step flow have been made, e.g., by 
Bradshaw and Wong [1], Eaton and Johnston [2] and 
Etheridge and Kemp [3]. The data accumulation has also been 
required in order to evaluate turbulence modeling in predic
tion codes. Some recent studies have been focussed on 
understanding parameters which affect the reattachment pro
cess over a backward-facing step from the viewpoint of sup
pression and control of the separation process, while major 
emphasis has been placed on observation of such a flow field. 
The effect of Reynolds number as one of the important 
parameters was studied by Eaton and Johnston [4], Adams et 
al. [5], and Durst and Tropea [6]. Inlet condition as a ratio of 
boundary layer thickness to step height was clarified by 
Adams et al. [5]. The effect of streamline curvature on the 
reattachment length was examined in the experiments in 
curved channels by Honami and Nakajo [7]. An extensive 
study on the expansion ratio was made by Durst and Tropea 
[6]. No systematic and comprehensive study of the effect of 
turbulence has been made, though freestream turbulence was 
expected to be an effective parameter as pointed out by Eaton 
and Johnston [2]. 

The present authors observed in a preliminary experiment 
that as the turbulence level in the freestream region upstream 
of the step became higher, the reattachment length became 
shorter. It was impossible to find out which local turbulence in 
the transvere direction, i.e., in the freestream or near wall 
region, at the separation point influences the reattachment 
length which is a representative parameter of the reattachment 
process. The objective of the present paper is to provide 
answers to the aforementioned problem, and to understand 
extensively the effect of inlet turbulence intensity by 

systematically varying the local turbulence in the transverse 
direction by use of a rod or cavity in addition to freestream 
turbulence. 

Experimental Apparatus and Procedures 
Figure 1 shows schematics of the experimental apparatus 

and test geometry. The precise geometry of the step and a 
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coordinate system where Z coordinate is taken in the spanwise 
direction of the step are also illustrated in Fig 1. The air flow 
tunnel consists of an inlet duct of 1560 mm in length (in some 
cases 1500 mm) and a test section of 2000 mm in length. The 
inlet duct of 1500 mm in length is used for the experiments on 
the effect of free-stream turbulence with and without the grid. 
In these cases, the terminology such as case A and F, which 
corresponds to the lowest and highest freestream turbulence, 
is used. The other of 1560 mm in length is utilized to install the 
cavity or rod near the step. The reference station is located 160 
mm (150 mm in case A to F) upstream of the separation point. 
Furthermore, the terminology in those cases is changed to add 
"0" like case A0 or F0 to the aformentioned case such as case 
A or F. After the inlet section is extended by 60 mm, the 
change in the reattachment length is within ±0.1 H. The same 
velocity and turbulence intensity profiles were also obtained at 
the same distance from the step before and after extension of 
the inlet section. Therefore, experiments in case A and A0 
were conducted under the same inlet condition at the step in 
spite of the extension, i.e., case A was the same as case A0. 
The aspect ratio of the test section width to the step height is 
18. An expansion ratio of the test section height hi to the inlet 
section height Al is 1.5. A fully developed turbulent boundary 
layer (599/if=0.5) is obtained at the step. The free-stream 
velocity at the reference point is 12 m/s. The step height 
Reynolds number ReH is 3.2x 104. Turbulence intensity, Tu, 
is defined as the root mean square of the fluctuating velocity, 

u', obtained by a single hot-wire probe normalized by the 
free-stream velocity, Uo, at the reference point, i.e., 

u'2/Uo. 
Figure 2 shows a grid configuration which is located as a 

grid box at the nozzle exit upstream of the inlet duct. No grid 
was used in case A and A0. 

Figure 3 shows an arrangement of a rod or two-dimensional 
cavity near the step in order to change local turbulence intensi
ty in the transverse location in addition to grid turbulence. 
The cavity was installed to increase near-wall turbulence 
without a substantial change in the velocity profile, adding 
" - C" in the terminology like case AO-C. The rod was placed 
100 mm upstream of the step. Each distance of the rod from 
the wall, which corresponds to the region at a half distance of 
the boundary layer thickness, at the boundary layer edge, and 
in the free-stream, is 11.5 mm, 20 mm, and 40 mm, respective
ly. The terminology in those cases is distinguished by adding 
" - R 1 " , " - R 2 " or " - R 3 " like case A0-R1. The installa
tion of the rod makes the local turbulence level high, though 
the velocity profile has defect by a wake due to the rod. 

The reattachment length, Xr, was determined by forward 
flow fraction measurements using a wall flow direction probe 
flush-mounted on the test surface. Mean velocity and tur
bulence intensity at the separation point and in the separated 
shear layer were measured by a hot-wire anemometer which 
was a linearized constant temperature type. The data in the 
highly turbulent region where local turbulence intensity was 

Nomenclature 

C//2 = 
d = 

Er = 

H = 
Hll = 

hi = 

hi = 

ReH 

skin friction coefficient 
rod diameter (ex., d5 means 
5 mm in diameter) 
expansion ratio, 
hl/hl(=1.5) 
step height (= 40 mm) 
shape factor 
channel height of inlet test 
section (= 80 mm) 
channel height of 
downstream of step (=120 
mm) 
Reynolds number based on 
step height 

Ree = Reynolds number based on 
momentum thickness 

Tu = turbulence intensity, 

U 
X 

Xr 
Xs 
W 

Tu = \lu'2/Uo 
longitudial velocity 
fluctuation 
friction velocity 
streamwise mean velocity 
streamwise distance from 
step base 
reattachment length 
reseparation point 
channel width ( = 720 mm) 

Y = transverse distance from 
wall on step side 

Y+ = transverse distance in wall 
law scale, Yur/v 

Z = spanwise distance from side 
wall 

5 = boundary layer thickness 
v = kinematic viscosity 
6 = momentum thickness 

Subscripts 
0 = reference point, X= —160 

mm 
p = freestream 
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Fig. 6 Velocity profiles at three spanwise stations in case F 

more than 30 percent were excluded because of the constraints 
on accuracy. 

Results and Discussions 
Inlet Condition. Figure 4 shows the decay process of 

freestream turbulence in the inlet section. Turbulence intensity 
in all cases except case A is still in the process of decaying. As 
turbulence intensity in the freestream decreases at. most by 0.7 
percent from the separation point to the reattachment point in 

Tu. % 
Re9 

6/H 
9/H 

H|2 
Cf/2 
Xr/H 

Case A 

0.25 

2.07 xlO3 

0.548 
0.0638 

1.37 

1.88x10-3 
8.21 

Case B 

1.3 
2.00 xlO3 

0.598 
0.0618 

1.36 

1.92xKr3 

8.10 

Case C 

3.3 
1.65x103 

0.586 
0.0508 

1.35 

2.11x10-3 
7.61 

Case 0 

5.3 
1.41 xlO3 

0.589 
0.0435 

1.33 

2.36xKT3 

6.97 

Case E 

5.7 
1.36xl03 

0.577 
0.0420 

1.34 

2.33x10-3 
6.91 

Case F 

7.4 
1.39x103 

0.588 
0.0430 

1.33 
2.31x»-3 

6.28 

Uncer ta inty in 5"/H = +0.01, in 6= +0.03 mm 
in H12 = ±0 .01 , Cf/2 = ±0.00002 a t 20:1 odds 

Table 2 Reattachment length 

Case 
A0 
CO 
DO 
F0 

A0-C 
A0-R1 
A0-R2 
A0-R3 
F0-C 
F0-R2 

Xr/H 
8.14 
7.54 
7.00 
6.28 
8.27 
8.43 
7.23 
7.94 
6.29 
6.09 

Xr/H 
Uncerta inty in 
= +0.1 a t 20:1 odds , 

case F, the effect of the decay rate on the reattachment process 
seems insubstantial. 

Figure 5 shows the velocity and turbulence intensity profiles 
at the reference point among the cases. Table 1 shows the 
boundary layer parameters at the reference point and the reat
tachment length Xr/H. 

Two-Dimensionality. It is important to obtain a uniform 
freestream and the two-dimensional boundary layer flow 
upstream of the step, even if the grid which might cause the 
non-uniformity is used. The two-dimensionality in the 
boundary layer and the uniformity in the free-stream within 
the range of 300 mm in the spanwise direction were checked at 
the reference point by the hot-wire measurement. 

Figure 6 shows the velocity profiles at the three spanwise 
stations of the reference point in case F which is the case of 
highest turbulence intensity and is the worst case of two-
dimensionality. In spite of the worst case, the similar boun
dary layer parameters are obtained. 

According to the spanwise measurements of forward flow 
fraction in the reattachment region, variations across the span 
6.9 <Z/H< 11.8 were within 2 percent for all the cases. The 
reattaching shear layer is almost two-dimensional in the sense 
of a long time average. 

Flow Characteristics at Separation Point. Figure 7 depicts 
the turbulence intensity distributions in a wall law scale at the 
separation point with and without a grid. As no detailed 
measurement at the separation point for cases B and E was 
made, the results on the cases A, C, D, and F will be discussed 
in detail. Table 2 shows the reattachment length for all the 
cases. The wall friction velocity is determined carefully by the 
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Fig. 9 Turbulence intensity and velocity profiles near the step 

Clauser's plot. All the cases show the logarithmic law in the 
near wall region under the different inlet condition. As the tur
bulence level becomes higher, the reattachment length 
becomes shorter. It is impossible to find out which turbulence 
in the transverse direction affects the reattachment length, 
since the turbulence level shifts in the same manner even in the 
boundary layer as well as the freestream among 4 cases. 

Effect of Local Turbulence. Figure 8 shows the turbulence 
intensity distributions at separation with the cavity of case 
AO-C and FO-C, and without the cavity of case A0 and F0. A 
local increase of turbulence can be observed at Y+ = 100 
because of the cavity. It is possible to evaluate precisely the ef
fect of local turbulence due to the cavity, since the profile of 
case FO-C shows the same as that of case F0 except near 
Y+ = 100. 

Figure 9(a) depicts the turbulence intensity distributions at 
X/H=0 and 1.25 in cases FO-C and F0. No change in tur
bulence intensity in the region from the peak to the step side 
can be observed in X/H=1.25. Figure 9(b) also shows the 
velocity distribution at the same stations. Small defect of the 
velocity at the near-wall region which corresponds to the 
region of the local increase of turbulence is observed at separa
tion. But, the same profiles are obtained 1.25 H downstream 
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10 

Case Xr/H 
O A0 8.14 
© A0-R3 7.94 

10 10' 10J 10" 

Fig. 10 Turbulence intensity profiles when a rod is placed in the 
freestream 
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Fig. 11 Velocity and turbulence intensity profiles for the two cases 
with and without a rod in the freestream 
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Fig. 12 Turbulence intensity profiles when a rod is placed at the 
boundary layer edge 

of the step. Although the turbulence intensity distributions are 
locally different, the reattachment length is the same. This 
means that local turbulence near Y+ =100 generated by the 
cavity has no effect on the reattachment process. 

Figure 10 depicts the turbulence intensity distributions at 
separation, when the rod of 5 mm in diameter is in the 
freestream. The turbulence level is almost the same except in 
the freestream region. It allows us to estimate the effect of 
free-stream turbulence. 

Figure 11 shows the distributions of mean velocity and tur
bulence intensity in the downstream direction in the cases with 
and without a rod, case A0-R3 and A0. Profiles of velocity 
and turbulence intensity are almost identical in both cases 
within the shear layer. These results indicate that freestream 
turbulence seems not to directly affect the development of the 
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Fig. 14 Reattachment length versus maximum turbulence intensity 
near the wall at the separation point 

inner mixing layer and the reattachment processes in the 
separated shear layer. 

Figure 12 shows the turbulence intensity profiles at separa
tion when the rod of 5 mm in diameter is placed at the edge of 
the boundary layer. A local increase of turbulence intensity 
near the boundary layer edge (Y+ —1000) and an overall in
crease from the near wall to the inner boundary layer are 
observed. The reattachment length shows a remarkable dif
ference among the two cases (A0-R2 and F0-R2), while the 
turbulence level near the edge of the boundary layer for these 
two cases is almost the same. Furthermore, the reattachment 
length of case F0 is shorter than that of case A0-R2, though 
turbulence intensity near the boundary layer edge of the latter 
case is about twice as the case F0. Correlation between the 
reattachment length and the turbulence intensity level at the 
boundary layer edge is quite low. 

Figure 13 shows the turbulence intensity profiles when the 
rod of 3 mm in diameter is placed in the outer boundary layer. 
Although a local increase of turbulence is obviously found at 
Y+ =* 500, the reattachment length in the case with the rod 
becomes longer than that in the case without the rod. Further
more, local turbulence at Y+ of 100-200 was found not to af
fect the reattachment length as mentioned in the case with the 
cavity in Fig. 8, though a local decrease is observed there. 
Therefore, turbulence intensity in the region where Y+ is 
more than 50 is considered to have no direct effect on the reat
tachment process from the experimental results with the cavity 
or rod. 

0 2 U x/H 6 

Fig. 15 Maximum values of streamwise turbulence intensity 
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Fig. 16 Velocity profiles in the downstream station 

Figure 14 shows the reattachmert length versus maximum 
turbulence intensity near the wall at the separation point. The 
maximum turbulence intensity is closely related to the reat
tachment length. A correlation factor among them is 0.987 
and extremely high, even if the mean velocity defect due to the 
rod installation is encountered. It is quite interesting to note 
that only a change in 2 percent of turbulence intensity near the 
wall introduces a change of 2 step heights in the reattachment 
length. These experimental results show that the near wall tur
bulence at the separation point is one of the representative and 
dominant parameters which affect the development of the 
separated shear layer and the reattachment process. 

Figure 15 shows the maximum turbulence intensity distribu
tions in the streamwise direction. All the cases A to F and the 
corresponding cases A0 to F0 with a rod show a plateau of 
constant intensity from X/H= 1.5 to 2.5 after a rapid increase 
downstream of the step. Turbulence intensity in four cases 
with a grid increases to a peak value just upstream of reattach
ment, then decays. However, the other cases with a rod (case 
A0-R2 and F0-R2) show a somewhat different trend 
downstream of X/H= 2.5. In comparison of case F0 with case 
F0-R2, maximum turbulence intensity in case F0 at the separa
tion point is lower than that in case F0-R2. Reverse of intensi
ty occurs near the plateau of constant intensity (X/H =2.5). 
Further downstream, the difference between the two cases 
becomes remarkable. Although the development of turbulence 
in the separated shear layer shows a different manner, the 
reattachment length in case F0 is longer than that in case F0 
with the rod. An examination of the previous results suggests 
that turbulence from the step to 2.5 H plays an important role 
in the reattachment process, and turbulence in the separated 
shear layer downstream of 2.5 H does not strongly influence 
the reattachment process. 

Characteristics of Inner Mixing Layer. The velocity and 
turbulence intensity are examined in detail in the region from 
the step to 2.5 H in order to make the entrainment process 
clear. Figure 16 is a velocity distribution in the downstream 
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Fig. 17 Velocity and turbulence intensity profiles in the entrainment 
region for the three cases 

0.2 

2.0 
x 

1.51-

.0 
'toag 

2.0 

1.5 
x 

1.0 

0.1 Tu 0.2 

0.5 -

X/H = 0 1.25 2.5 

-o-o- o-o oaaooot 

C & 

"nOe' 
ee?~ 

Case Xr/H 
o DO 7.00 
• F0 6.28 

0 0 ij/Up 0.5 1.0 

Fig. 18 Turbulence intensity and velocity profile in the entrainment 
region for the two cases with the same inlet velocity profile 

direction in case F and F0 which is the case of the highest tur
bulence intensity. There is no change in the free-stream and 
outer shear layer (Y/H> 1.2) velocity up to X/H= 2.5, but the 
inner region (Y/H< 1.2) shows significant variations. This 
suggests that the flow rate from the free-stream to the inner 
mixing layer is quite small, while the entrainment flow rate 
from the step corner region is large. Therefore, the develop
ment process in the inner mixing layer up to 2.5 H is 
dominated by the entrainment process. Hereafter the region 
up to 2.5 H from the step is called an "entrainment region." 
Further downstream a change both in the free-stream and mix
ing layer regions can be observed as shown in Fig. 16(b)- The 
similar process is also observed in the other cases. Much atten
tion will be paid to the development of the inner mixing layer 
in the entrainment region where turbulence plays an important 
role as shown in Fig. 15. 

Figure 17(a) shows the velocity profiles in the entrainment 
region for the three cases. The change in the reattachment 
length is about one step height with one another. At 
X/H= 1.25 the velocities in the outer layer differed from case 
to case, while in the inner layer the velocities were nearly iden
tical. The difference of the entrainment flow rate in the region 
from the step to X/H=1.25 is small among the three cases. 
However, more remarkable difference of the entrainment flow 
rate might be observed in the region from X/H= 1.25 to 2.5, 
since the inner velocity profiles are different for the 3 cases. 
Figure 17(6) shows the turbulence intensity profiles at the 

same stations. It can be clearly demonstrated that the entrain
ment flow rate becomes larger and the inner mixing layer 
development becomes faster, as turbulence intensity in the in
ner region of the mixing layer is higher. 

Figure 18 also shows the turbulence intensity and velocity 
change from separation to X/H=2.5 in case DO and F0. It 
might be easy to compare the following two cases DO and F0 
on the development of the inner mixing layer, since the veloci
ty profiles at separation is about the same but the turbulence 
level is different. Case F0 which corresponds to the case of the 
shorter reattachment length shows the higher turbulence level 
in the inner mixing layer and faster development of the inner 
mixing layer. According to the comparison of the three cases 
and the two cases mentioned above, turbulence intensity near 
the wall at the separation point plays a significant role in the 
development of the inner mixing layer, and correspondingly 
leads to faster reattachment. 

Conclusions 
The present study is focussed on understanding behavior of 

separated shear layer over a backward-facing step and its reat
tachment, when a two-dimensional cavity or rod is installed 
upstream of the step in order to change local turbulence inten
sity in addition to grid turbulence in the freestream. 

The following conclusions are obtained. 
(1) The reattachment length has a strong negative correla

tion with maximum turbulence intensity near the wall at 
separation, while the effect of the velocity distribution 
through the inlet boundary layer on the reattachment process 
is weak. 

(2) Turbulence in the entrainment region immediately 
downstream of the step plays an important role in determining 
the reattachment length. 
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Effect of 90 Degree Flap on the Aerodynamics of a 
Two-Element Airfoil 

J. Katz and R. Largman 

The aerodynamic performance of a two-element airfoil with a 
90 deg. trailing edge flap was experimentally investigated. The 
5 percent-chord long flap, significantly increased the lift of the 
baseline airfoil, throughout a wide range of angles of attack. 
The maximum lift coefficient of the flapped wing increased 
too, whereas the lift/drag ratio decreased. 

Introduction 
High speed ground vehicles, such as race cars, can improve 

their performance and particularly their cornering speeds by 
generating aerodynamic downforce. This additional 
downforce increases the tires' adhesion and is generated by 
wings added onto the vehicle's body (reference [1]). Because 
of considerations, such as sufficient rear view, the geometry 
and position of these wings are restricted by regulations. Fre
quently, these requirements result in a limit on the wing angle-
of-attack range or on its chamber shape. In situations when 
maximum negative lift is desired, race-car designers have used 
short (up to 5 percent chord long), 90 deg. trailing edge flaps 
to increase the aerodynamic down-force (these flaps are fre
quently called "Gurney-flaps"). This very high deflection and 
short flap (compared to aircraft type flaps) will cause the flow 
to separate locally and its effectiveness for this application is 
not well documented. 

In this study, the performance of a typical two-element 
race-car rear wing was examined experimentally to determine 
the effectiveness of the 90 deg. flap. 

Experimental Procedure 
The geometry of the two element airfoil section that was 

used is shown in Fig. 1. This airfoil shape differs slightly from 
multielement airfoils used on aircraft [2-5] at the gap region 
between the two elements, since the second element does not 
retract into the main wing. The wing had a rectangular plan-
form with an aspect-ratio of 4.6 and had two small end-plates 
with the contours shown in Fig. 1. The main function of these 
end-plates was to structurally hold the wing elements in place 
but they also increased the lift slope by about 10 percent. To 
investigate the effect of the flap, a 5 percent-chord long, thin 
metal sheet was attached to the wing trailing edge, as shown in 
Fig. 1. Since within the operational angle-of-attack range of 
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the baseline wing (2<a< 12 deg.), the flow over the two air
foil elements was attached, the effect of the open gap between 
the two airfoil elements was briefly investigated by taping it 
along the dashed lines shown in Fig. 1. 

The wing was tested in a closed circuit wind tunnel with a 
cross section of 0.8 mxl.15 m, and at a Reynolds No. of 
0.3 x 106 (based on wing chord). Because of the attached flow 
conditions (within the operating range of a) for both the 
1/4-scale model and for the full-scale wing, it is assumed that 
this Reynolds no. is sufficient for lift measurements. Model to 
test-section cross-section area-ratio varied between 1-2 per
cent, so the effect of wind tunnel walls and the required 
blockage corrections were minimum. Also, the balance 
system accuracy for the lift and drag components was less than 
±0.1 pounds. 

Results 
The lift coefficient versus angle-of-attack for the baseline 

wing alone, with the 90 deg flap, and with the sealed gap is 
presented in Fig. 2. The lift of the basic wing (with an aspect 
ratio of 4.6) is competitive with two-element aircraft wing sec
tions (reference [5]). The wing with the flap clearly has a much 
higher lift than the baseline shape over the whole range of 
angle-of-attack. Flow visualizations (see inset to Fig. 2) in
dicated that the flow is always separated on the suction side, 
behind the flap. Furthermore, on the pressure side ahead of 
the flap and above the wing, a small flow-recirculation area 
was observed. Therefore the lift increase can be attributed to 
the additional twisting of the streamlines at the vicinity of the 
airfoils trailing edge. When the gap between the two wing 
elements was closed, the lift dropped further down, showing 
the positive interaction between the elements and the advan
tage of the multielement design [4]. The most important effect 
of the "Gurney flap", as shown in Fig. 2, is the increase in the 
maximum lift coefficient, even though wing stall is initiated at 
smaller angles-of-attack (with the flap). 

Another important aspect of wing design is its efficiency in 
generating the aerodynamic force, which can be weighted by 

Fig. 1 Geometry of the two element airfoil and the 90 deg. flap 
(c = 0.102 meter, also note the definition of positive a) 
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Fig. 3 Lift/drag ratios for the three airfoil configurations. (Uncertainty 
in UD= ±0.25, and in a= ±0.2 deg.) 

analyzing the lift/drag ratio diagram (Fig. 3). Here the wing 
with the flap is the least efficient over the whole practical 
range (2<a< 12 deg.). The baseline wing is more efficient at 
the beginning of this "design angle-of-attack range" (shown 
in Fig. 2), but has similar L/D as the sealed-gap wing for the 
higher angles of attack. 

At the lower angles-of-attack (a<2 deg.) the performance 
of the wing has dropped considerably because of a large flow 
separation pattern on its pressure side, as shown in the inset in 
Fig. 3. Therefore if a wing has to operate at this region a dif
ferent shape, perhaps with less camber, should be designed. 

Concluding Remarks 
The above data show that for high aerodynamic efficiency 

the 90 deg. flap is not the most effective choice. However, if 
wing chord and span are limited (as the case for most race 
cars) and if maximum downforce is sought, then higher down 
force coefficients can be obtained by this simple add-on, 
without a redesign of the airfoil shape. 
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A Modified Van Driest Formula for the Mixing Length 
of Turbulent Boundary Layers in Pressure Gradients 

P. S. Granville1 

A modified van Driest formula is proposed for the mixing 
length of turbulent boundary layers in pressure gradients. The 
slope and intercept of the logarithmic similarity law are 
satisfied asymptotically unlike existing modified van Driest 
formulas. 

Introduction 
Algebraic formulas for mixing lengths represent the 

simplest type of turbulence modelling and have often proved 
to be the most reliable [1,2] for predicting the development of 
turbulent boundary layers. The van Driest formula [3] for 
mixing lengths has almost become the standard for the near-
wall region of turbulent boundary layers. The physical basis of 
mixing lengths in general has been examined recently by 
Kutateladze [4] and by Landahl [5]. 

The original van Driest formula predicts very well the 
velocity profile of the viscous sublayer, the buffer layer and 
asymptotically the log layer of turbulent boundary layers in 
zero longitudinal pressure gradient on smooth surfaces. 
However it has proved unsatisfactory for non-zero pressure 
gradients. Consequently various modifications have been pro
posed to the van Driest formula which are listed in the Table 1. 

The proposed modifications should satisfy asymptotically 
the experimental fact that the inner logarithm velocity law is 
invariant in usual pressure gradients [6, 7] with respect to both 
slope and intercept. 

It is shown that all the formulas listed in the Table 1, 
references [8 to 12], with the exception of that of Nituch et al. 
[13] fail with respect to predicting asymptotically the slope of 
the log law. It is also shown that the formula of Nituch et 
al.[13] which predicts the slope, fails to predict the correct 
intercept. 

It is proposed that the formula of Nituch et al. be further 
improved by relating the van Driest factor to a modified 
pressure-gradient parameter so as to predict the correct in
tercept as well as slope of the log law. A numerical relation is 
determined in this respect and incorporated into the proposed 
formula. 

The proposed mixing-length formula may be used for the 
Baldwin-Lomax model [14, 15]. 

Velocity Profile 
In a recent experiment Salam [7] shows again that the inner 

log law for the velocity profile near a wall does not vary in 
pressure gradients even close to separation 

u* = (l/K)\ny*+B1 (1) 
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Fig. 2 Lift coefficients for the baseline and the modified wings 
(AR = wing span/wing chord, uncertainty in CL= ±0.02, in a= ±0.2 
deg.) 
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Fig. 3 Lift/drag ratios for the three airfoil configurations. (Uncertainty 
in UD= ±0.25, and in a= ±0.2 deg.) 

analyzing the lift/drag ratio diagram (Fig. 3). Here the wing 
with the flap is the least efficient over the whole practical 
range (2<a< 12 deg.). The baseline wing is more efficient at 
the beginning of this "design angle-of-attack range" (shown 
in Fig. 2), but has similar L/D as the sealed-gap wing for the 
higher angles of attack. 

At the lower angles-of-attack (a<2 deg.) the performance 
of the wing has dropped considerably because of a large flow 
separation pattern on its pressure side, as shown in the inset in 
Fig. 3. Therefore if a wing has to operate at this region a dif
ferent shape, perhaps with less camber, should be designed. 

Concluding Remarks 
The above data show that for high aerodynamic efficiency 

the 90 deg. flap is not the most effective choice. However, if 
wing chord and span are limited (as the case for most race 
cars) and if maximum downforce is sought, then higher down 
force coefficients can be obtained by this simple add-on, 
without a redesign of the airfoil shape. 
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A Modified Van Driest Formula for the Mixing Length 
of Turbulent Boundary Layers in Pressure Gradients 

P. S. Granville1 

A modified van Driest formula is proposed for the mixing 
length of turbulent boundary layers in pressure gradients. The 
slope and intercept of the logarithmic similarity law are 
satisfied asymptotically unlike existing modified van Driest 
formulas. 

Introduction 
Algebraic formulas for mixing lengths represent the 

simplest type of turbulence modelling and have often proved 
to be the most reliable [1,2] for predicting the development of 
turbulent boundary layers. The van Driest formula [3] for 
mixing lengths has almost become the standard for the near-
wall region of turbulent boundary layers. The physical basis of 
mixing lengths in general has been examined recently by 
Kutateladze [4] and by Landahl [5]. 

The original van Driest formula predicts very well the 
velocity profile of the viscous sublayer, the buffer layer and 
asymptotically the log layer of turbulent boundary layers in 
zero longitudinal pressure gradient on smooth surfaces. 
However it has proved unsatisfactory for non-zero pressure 
gradients. Consequently various modifications have been pro
posed to the van Driest formula which are listed in the Table 1. 

The proposed modifications should satisfy asymptotically 
the experimental fact that the inner logarithm velocity law is 
invariant in usual pressure gradients [6, 7] with respect to both 
slope and intercept. 

It is shown that all the formulas listed in the Table 1, 
references [8 to 12], with the exception of that of Nituch et al. 
[13] fail with respect to predicting asymptotically the slope of 
the log law. It is also shown that the formula of Nituch et 
al.[13] which predicts the slope, fails to predict the correct 
intercept. 

It is proposed that the formula of Nituch et al. be further 
improved by relating the van Driest factor to a modified 
pressure-gradient parameter so as to predict the correct in
tercept as well as slope of the log law. A numerical relation is 
determined in this respect and incorporated into the proposed 
formula. 

The proposed mixing-length formula may be used for the 
Baldwin-Lomax model [14, 15]. 

Velocity Profile 
In a recent experiment Salam [7] shows again that the inner 

log law for the velocity profile near a wall does not vary in 
pressure gradients even close to separation 

u* = (l/K)\ny*+B1 (1) 
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Table 1 Prandtl-van Driest mixing-length formulas for turbulent boundary layers in 
pressure gradients 

METHOD Ref. FORMULA REMARKS 

[3] 
van Driest (1956) l* = icy* [1-exp (-y*/\0*)] zero pressure gradient 

[8] does not satisfy 
Patankar and Spalding (1968) l* = icy* [1-exp (-y*4r*/\Q*)] slope of log law 

[9] /* = /y*[1-exp (-y* does not satisfy 

Cebeci (1970) Vl + 11.8p + A0*)], see note 3 slope of log law 

[10] 1) l* = ny* [1-exp (-y*T*i/2/\0*)] does not satisfy 

Launder and Pridden (1973) 2) l* = ny* [1 -exp (-y*T*2/\0*)] slope of log law 

[11] does not satisfy 
Baker and Launder (1974) l* = K.y* [1-exp (-v*r*/X0*)] slope of log law 

[12] /* = «.y* (1-exp [-y*(l+ap + )/\0*]} does not satisfy 
Kays and Moffat (1975) a= 14.2 for p * >0 o = 30.2 for slope of log law 

p+<0 

Nituch, Sjolander [13] satisfies slope but not 
and Head (1978) /* = ̂ *Vr* [1-exp (-y*/\0*)] intercept of log law 
proposed Equation /* = KV*VT* (1-exp [—y* satisfies both slope and 

17 Vl + 6p+"/26]) intercept of log law 
6 = 14.0 for p + >0 
6=16.4 forp + <0 

Notes: 1. r* = l+p+y* 
2. p + =0.9 p + 

3. Thep+ in the paper of Cebeci is defined as negative of p+ used here 
4. K = 0.4, X0* = 26 

where u* = u/uT, y* = ur y/v, K = von Karman constant, \/K 
= slope, S, = intercept, uT = \ZTW/P, TW = wall shear stress, 
p = density of fluid, v = kinematic viscosity, and.y = normal 
distance from wall. 

The turbulent shear stress (T,) may be given by the mixing 
length (/) as e 

*- ' (-£) ' 
or nondimensionally as 

rw \dy* ) 
where /* = uTl/v. 

The total shear stress (T) which has laminar and turbulent 
contributions may be expressed nondimensionally as 

„ du* „, / du* \ 2 

T*= + / * 2 I ) (4) 
dy* V dy* ) 

where T* = T/T^. Consequently, 

J * U 2-ll (5) 
dy* l+Vl+(2 /* ) 2

 T* 
From the equation of motion, the shear stress profile, r*, close 
to the wall is given by 

r* = l+p+y*+. . . (6) 

where p+ = (v/pur1) dp/dx, a pressure-gradient parameter. 
Here p = pressure and x is the stream wise coordinate. 

The slope of the shear-stress profile, dr*/dy*, is p+ at the 
wall and gradually decreases away from the wall due to the ef
fect of the convective terms of the equation of motion. 
However since the layers near the wall which are being con
sidered are relatively thin, the variation of the shear stress 
away from the wall is practically linear. This was noted by 
Townsend [16] from a study of measured data such that 

r* = l + cy* (7) 

where c is a constant in the v-direction and is close in value to 
that of p+. 

Patel [17] also recommends a linear relation 

/ v dr\ dr* 

\pur ay / ay* 

which, when integrated, becomes the same as that of 
Townsend. 

Since c is close in value to p+, it will be designated as p+ . 
Then in the wall region 

T* = l+p+y* (9) 

p+ may be related t o p + by 

p+=ap+ (10) 

where a is an appropriate constant, a < 1. 
The original van Driest model incorporating the Prandtl 

mixing length is given nondimensionally as 

l* = Ky* ( l - e - ^ * ) (11) 

where X* = uT \/v, X is the van Driest factor. 

Slope of Log Law 
The van Driest mixing length model works well for zero 

pressure gradient in predicting the logarithmic velocity profile, 
equation (1), if X* = X0*, the particular value for zero 
pressure gradient. For pressure gradients, however, agreement 
has been poor. This has prompted many investigators [8-13] 
to propose in effect modifications to X* as shown in the Table 
1. The presence of these many formulas would seem to in
dicate an underlying dissatisfaction. 

Now, if the laminar contribution to the shear stress (r) is 
considered negligible at the higher values of y* in the log 
region, then from definitions 

/* = Ky* VF* (12) 

This conclusion was arrived at by various investigators such as 
Reeves [18], Glowacki and Chi [19] and Galbraith [20] as ex
plained by Nituch et al. [13] who proposed for the viscous 
sublayer, buffer layer as well as the log layer 

l* = Ky* VY* (l-e~y'/X°') (13) 
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Fig. 1 Variation of slope, nduVd (In y*), with normal distance, y", using 
formulas in the table 

Fig. 2 Prediction of intercept, B1; as a function of pressure-gradient 
parameter, p +, according to method of Nituch et al. (reference [13]) 

where X0* is again the value of X* for zero pressure gradient. 
Figure 1 illustrates the behavior of the various formulas 

given in the Table with respect to the slope of the velocity pro
file as given by equation (5) which is rewritten as 

0 - 0 . 0 0 1 -0.0O2, - 0 . 0 0 3 -0 .004- - 0 .0O5. , 

du* 2«T*y* 
, =- (14) 

d(\ny*) l+Vl+(2 /* ) 2 T* 
For the log law, K du*/d(ln y*) = 1, and for laminar flow, K 
du*/d(ln y*) = Kt*y*. A representative display shown in Fig. 
1 is for an adverse pressure gradient of p + = 0.05. A standard 
value of K = 0.4 is is used. 

In Fig. 1 it is shown that both the van Driest formula for 
zero pressure gradient (p+ = 0) and the Nituch formula for 
an adverse pressure gradient (p+ = 0.05) asymptotically at
tain the slope of the log law. All the other modified van Driest 
formulas as listed in the Table fail markedly for pressure gra
dients in this respect and in fact tend towards Kdu*/d(lny*) = 
VT*. The van Driest plot for p+ = 0 . 0 5 represents the un
modified van Driest formula using a value of X0*. 

Intercept 

The mixing-length formula should also lead to a value of an 
intercept, Bx which agrees with the log law. Equating the log 
law, equation (1), and the velocity profile obtained by in
tegrating equation (5) results in 

r > 2 T * r l n y' 
B\ = / dy* + 

Jo l+Ji+(2l*)2T* Jo 
l + V l + ( 2 / * ) V 

2r*y* 
- — 1 d(\n 

K J 
y*) (15) 

L l + V l + (2/*)V 
where y* is a sufficiently large value of y* in the log layer. The 
integrand of the second term becomes practically zero at the 
value of y*. 

For a value of X0* = 26, B{ = 5.23 for K = 0.4 for zero 
pressure gradient, T* = 1. 

For the formula of Nituch et al. which uses X* = X0*, Bl in
creases with p+ as shown in Fig. 2 instead of remaining con
stant with pressure gradient. 

Proposed Mixing-Length Formula 
To keep the intercept (B;) constant for all pressure gradients 

as shown experimentally, it is necessary to have the van Driest 
factor (X*) as a function of pressure-gradient parameter p+ . 
Then 

/* = Ky*Vr* (1 - e-*'/x') (16) 

where X* = f\p + ]. 
From numerical solutions of Bx in equation (15), X* is plot

ted against p+ in Fig. 3. Here K = 0.4. A numerical fit to 

Fig. 3 Variation of van Driest factor, A with pressure-gradient 
parameter, p + , according to proposed formula, equation (16) 

4 

0 

/Ar/\\\\ 

i i 
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Fig. 4 Variation of slope (K du'ld (In y*), with normal distance y*, using 
proposed formula, equation (17), for various pressure gradients 

(26/X*)2 = \+bp+ gives b = 14.0 for p+ > OandZ? = 16.4 
forp+ < 0. Then the proposed formula is 

/* = K^*V7* ( i - e - W i + 6p+/26) ( 1 7 ) 

where b = 14.0 forp+ > 0 and b = 16.4 forp+ < 0. 
A plot of the slopes based on the proposed formula in Fig. 4 

shows that the log law is satisfied asymptotically for represen
tative pressure gradients, favorable and adverse. 

The proposed formula, equation (17), is also recommended 
for the Baldwin-Lomax model [14, 15] near the wall instead of 
the unmodified van Driest model which has been used. 

Concluding Remarks 
The proposed formula, equation (17), satisfies the slope of 
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the log law by using ny'Vr* instead of just Ky* and the in
tercept by properly relating the van Driest factor X* to 
pressure-gradient parameter p+. Although the existing for
mulas with the exception of that of Nituch et al. could im
mediately satisfy the slope of the log law by adding Vr* to Ky*, 
there still remains the problem of satisfying the intercept. 
Curiously, if the formula of Cebeci adds the Vr*. and uses a 
value of a = 0.84 to convert thep+ to p+ , it exactly matches 
the proposed formula for adverse pressure gradients. 
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Stability of the Flow Between Rotating Cylinders— 
Wide-Gap Problem 

H. S. Takhar,1 M. A. AH,2 and V. M. Soundalgekar3 

Introduction 

Wide-gap stability of Couette flow was studied by many 
authors. Notable among these are Sparrow et al. [1], Astill 
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and Chung [2], and Walowit et al. [3]. All other papers are 
referred in the reference list of reference [3]. However, cell-
pattern and the radial eigenfunctions were not shown in detail 
earlier. So we now propose to show these in the present 
investigation. 

Consider the flow of a viscous incompressible fluid between 
two concentric rotating cylinders with i?, and R2 as the radii 
and Q, and fi2

 a s the angular velocities of the inner and outer 
cylinders, respectively. 

Then the differential equation which governs the linear 
stability of the flow in a wide-gap region is given by [reference 
[3]] 

(DD*-a2Yv=-a2Tg(x)v (1) 

where u, v are, respectively, the dimensionless amplitudes of 
the normal mode perturbations of the radial and azimuthal 
velocity components. These equations are to be solved with 
following boundary conditions: 

v= (DD* -a2)v=D(DD* -a2)v = 0a.tx = 0,l 

u / ^ l^—V2 , f2( l - /«) Hereg(x) = — ;—h 

(2) 

l - „ 2 

1 

1 - i j 2 

Q2 

• p " ' ^ o, v = 

Ro 
, d = R2-Rx, a = \d, T= 

Ri 

4A*Q}d* 

n- v = L n* = h -
dx d dx e 

(3) 

The eigenvalue problem governed by equations (1) and (2) is 
solved numerically, following Harris and Reid [5]. The pro
cedure starts by rewriting the governing equation (1) as a 
system of first order differential equations which are then in
tegrated by using the Merson form of the Runge-Kutta 
method. The range of integration was divided into twenty 
equal increments. The integration was advanced from x=0, 
over successive increments. The final value of one increment 
provides the initial value for the next. The integration incre
ment is taken as 1/20. This procedure obtains an estimate of 
the local truncation error at each step and varies the step 
length automatically to keep this estimate below a specified er
ror bound. If the step-length becomes less than 10 " 4 times the 
initial step length, the procedure stops the calculation and an 
error message is printed. For all calculations, the specified er
ror bound was set equal to 10"4 . The truncation error per step 
length is controlled by varying the step length. Over a number 
of steps the errors can accumulate in various ways and the 
total error may exceed the specified error bound. This can be 
controlled by reducing the error bound for a large number of 
steps. This was found to be unnecessary in the present 
problem. 

These eigenfunctions and the corresponding cells at the 
onset of instability for different values of jx, »j are shown in 
Figs. 1-4, and the numerical values of ac, Tc are listed in Table 
1. Also variation of ac, Tc with /*, i? is shown in Figs. 5-6. The 
Taylor number is defined in a different manner in references 
[1,2]. The following relation exists between T of our analysis 
and TAC of Astill and Chung [reference [2]]. 

= 4(TA C)2 (•f-0 
- l 

(4) 
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the log law by using ny'Vr* instead of just Ky* and the in
tercept by properly relating the van Driest factor X* to 
pressure-gradient parameter p+. Although the existing for
mulas with the exception of that of Nituch et al. could im
mediately satisfy the slope of the log law by adding Vr* to Ky*, 
there still remains the problem of satisfying the intercept. 
Curiously, if the formula of Cebeci adds the Vr*. and uses a 
value of a = 0.84 to convert thep+ to p+ , it exactly matches 
the proposed formula for adverse pressure gradients. 
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Stability of the Flow Between Rotating Cylinders— 
Wide-Gap Problem 

H. S. Takhar,1 M. A. AH,2 and V. M. Soundalgekar3 

Introduction 

Wide-gap stability of Couette flow was studied by many 
authors. Notable among these are Sparrow et al. [1], Astill 
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and Chung [2], and Walowit et al. [3]. All other papers are 
referred in the reference list of reference [3]. However, cell-
pattern and the radial eigenfunctions were not shown in detail 
earlier. So we now propose to show these in the present 
investigation. 

Consider the flow of a viscous incompressible fluid between 
two concentric rotating cylinders with i?, and R2 as the radii 
and Q, and fi2

 a s the angular velocities of the inner and outer 
cylinders, respectively. 

Then the differential equation which governs the linear 
stability of the flow in a wide-gap region is given by [reference 
[3]] 

(DD*-a2Yv=-a2Tg(x)v (1) 

where u, v are, respectively, the dimensionless amplitudes of 
the normal mode perturbations of the radial and azimuthal 
velocity components. These equations are to be solved with 
following boundary conditions: 

v= (DD* -a2)v=D(DD* -a2)v = 0a.tx = 0,l 

u / ^ l^—V2 , f2( l - /«) Hereg(x) = — ;—h 

(2) 

l - „ 2 

1 

1 - i j 2 

Q2 

• p " ' ^ o, v = 

Ro 
, d = R2-Rx, a = \d, T= 

Ri 

4A*Q}d* 

n- v = L n* = h -
dx d dx e 

(3) 

The eigenvalue problem governed by equations (1) and (2) is 
solved numerically, following Harris and Reid [5]. The pro
cedure starts by rewriting the governing equation (1) as a 
system of first order differential equations which are then in
tegrated by using the Merson form of the Runge-Kutta 
method. The range of integration was divided into twenty 
equal increments. The integration was advanced from x=0, 
over successive increments. The final value of one increment 
provides the initial value for the next. The integration incre
ment is taken as 1/20. This procedure obtains an estimate of 
the local truncation error at each step and varies the step 
length automatically to keep this estimate below a specified er
ror bound. If the step-length becomes less than 10 " 4 times the 
initial step length, the procedure stops the calculation and an 
error message is printed. For all calculations, the specified er
ror bound was set equal to 10"4 . The truncation error per step 
length is controlled by varying the step length. Over a number 
of steps the errors can accumulate in various ways and the 
total error may exceed the specified error bound. This can be 
controlled by reducing the error bound for a large number of 
steps. This was found to be unnecessary in the present 
problem. 

These eigenfunctions and the corresponding cells at the 
onset of instability for different values of jx, »j are shown in 
Figs. 1-4, and the numerical values of ac, Tc are listed in Table 
1. Also variation of ac, Tc with /*, i? is shown in Figs. 5-6. The 
Taylor number is defined in a different manner in references 
[1,2]. The following relation exists between T of our analysis 
and TAC of Astill and Chung [reference [2]]. 

= 4(TA C)2 (•f-0 
- l 

(4) 
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With the help of this relation (4), we have converted some 
values of ac, Tc from reference [2] and these are plotted in 
Figs. 5-6. The agreement seems to be excellent. Also ac, re
values are compared with those of Walowit et al. [3] and the 
agreement here is also excellent. 

We observe from Fig. 1 that the maximum value of the 
radial eingenfunction u (x) shifts toward the inner cylinder . 
when the gap-width increases and the inner cylinder is only 

rotating. On Figs. 3 and 4 the cell-pattern is shown for -q = 0.9 
and /* = 0.0, —1.0 respectively. On Fig. 5 the variation of Tc 
with respect to r\ is shown. We observe from this figure that 
when the gap-width is large, the flow is more stable when the 
two cylinders are counter-rotating. The flow is destabilized 
early when the two cylinders are corotating and the gap width 
is small or ij is large. However, we observe from this figure 
that for n>0.5, Tc is found to be unaffected by a change in 

u(x) 

0.0 0.1 0.2 0.3 04 0.5 06 0.7 0.0 0.9 1.0 

Fig. 1 The radial eigenfunction u(x) for /i = 0.0 and different values of >j 
Fig. 3 The cell pattern at the onset of instability for ij = 0.9 and p = 0.0 

Fig. 2 The radial eigenfunction u(x) for i; = 0.9 and different values of /» 
Fig. 4 The cell pattern at the onset of instability for v = 0.9 and 
n= -1 .0 

Table 1 Critical values of T and a for various values of /x, t\ 

V 

0.9 

0.75 

0.5 

0.4 

M 

0 
0.25 
0.5 
0.75 

-0.25 
-0.5 
-0.75 
-1.0 
-1.5 
0 
0.25 
0.5 

-0.25 
-0.5 
-0.75 
0 
0.25 

-0.25 
-0.5 
0 
0.1 
0.16 

-0.1 
-0.16 
-0.25 

ac 

3.129 
3.120 
3.118 
3.117 
3.151 
3.24 
3.642 
4.41 
5.58 
3.135 
3.125 
3.121 
3.176 
3.413 
4.312 
3.163 
3.143 
3.358 
4.8 
3.184 
3.166 
3.162 
3.236 
3.33 
3.811 

T 
1 c 

3646.94 
2847.8 
2332.13 
1973.13 
5033.71 
7877.26 
14651.31 
27135.50 
69640.82 
4204.45 
3096.38 
2445.5 
6457.4 
12485.02 
27973.68 
6199.2 
3828.49 
14778.13 
52217.36 
7996.17 
5989.16 
5198.73 
11864.14 
16309.04 
30110.89 

Walowit 
et al. 

3648.15 

2332.84 

5035.06 

6198.4 
3828.88 
14775.6 
53292.0 
7994.38 

5198.81 

30191.25 

i) 

0.3 

0.2 

0.1 

V-

0 
0.01 
0.08 

-0.01 
-0.09 
-0.1 
0 
0.01 
0.04 

-0.01 
-0.04 
-0.1 

0 
0.01 

-0.01 

ac 

3.215 
3.210 
3.19 
3.219 
3.329 
3.361 
3.263 
3.253 
3.234 
3.276 
3.358 
4.250 

3.340 
3.304 
3.424 

T 
1 c 

11548.17 
10999.47 
7942.69 
12151.8 
20372.15 
22117.03 
20715.78 
18991.39 
15158.94 
22763.45 
31938.73 
82090.37 

64597.31 
50628.78 
87873.32 

Walowit 
et al. 

11555.55 

7942.33 

20728.5 

15168.0 

65000 
50910 
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Fig. 5 Variation of critical Taylor number 

Fig. 6 Variation of the critical wave-number 

the gap-width i.e., Tc is not affected by the variation of /i for 
>0.5. 

On Fig. 6, the variation of ac, the critical wave number, is 
shown against JX and for different values of r\. An increase in t\ 
i.e., by decreasing the gap-width, there is a decrease in the 
critical wave-number. When the two cylinders are counter-
rotating the critical wave-number increases very fast, but when 
these cylinders are corotating, ac is not affected by the varia
tion of 1) when jx>0.5, i.e., by the variation of the gap-width. 
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Passive Control of Three-Dimensional Separated Vor
tical Flow Associated With Swept Rearward-Facing Steps 

G. V. Selby1 

Control of the three-dimensional separated-J'low region down
stream of a swept, rearward-facing step has been studied with 
the purpose of reducing the separated-flow region and atten
dant drag. Results have indicated that geometric modifications 
in the region do wnstream of the step where the span wise vortex 
is formed has little effect on the extent of the separated flow, 
while "conical-lip" and "vortex-trough" base modifications 
lead to a significant reduction in reattachment distances. The 
"conical-lip"modification involves a step lip with variable ra
dius and the "vortex troughs" are grooves in the surface up
stream of the step which produce longitudinal vortices. 

Introduction 
Control of three-dimensional flow separation is of particular 

interest for drag reduction and high lift. The effectiveness of 
several boundary-layer control concepts in reducing flow sep
aration on moderately and highly swept wings has been studied 
in references [1] and [2]. These concepts include slot blowing 
and suction, vortex generators and boundary layer fences. 
Previous investigators also examined techniques for controlling 
the separated, streamwise-directed vortical flow fields gener
ated by the fuselages and wings of military fighter aircraft at 
high angle of attack (references [3]-[6]). In addition to blowing 
[3] and suction [4], these separated-flow control methods in
cluded the installation of add-on devices, such as vortex gen
erators [5] and vertical flaps [6], at the leading edge of delta 
wings. The present paper considers separated-flow control for 
flow over a swept rearward-facing step, which is neither two-
dimensional nor a complex three-dimensional flow. 

Discussion 
The present research was conducted in a low-speed, low-

turbulence wind tunnel operated by the Viscous Flow Branch 
of the High Speed Aerodynamics Division at NASA Langley 
Research Center. The model consisted of a splitter-plate with 
rearward-facing step heights (h) of 1.12, 1.27, and 2.38 cm 
and step sweep angles (A) of 30 and 60 deg. The incoming flow 
was tripped, using a 1-mm diameter wire located 5 cm down
stream of the leading edge, resulting in a 2-cm thick turbulent 
boundary layer at the midspan of the step. The freestream 
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Fig. 3 Reattachment distance perpendicular to step versus spanwlse
coordinate lor the 60 deg basic swept·step model with various end con·
ditions (Re = 1.4 )( 106 and h = 1.27 em)

o Nominal end condition

D 00 end condition

o -600 end condition

2. 0~---;';c------;!;c-------,;::;'---7.::--~o 10 20 30

flow visualization technique. Details of the separated-flow case
without flow control are presented in reference Pl.

As an initial sensitivity study, the step was swept either 30
. or 60 deg relative to the freestream flow, as shown in Fig. 2,

and several geometric modifications in the region where the
vortex was formed were explored to examine their effect on

. flow parameters in the separated-flow region (60 deg swept
step model with h = 1.27 em). An examination of Fig. 3
indicates that the reattachment distance is effectively inde
pendent of the initial conditions beyond several step heights
in the spanwise direction. The surface swirl angle and base
pressure data of reference [7] further substantiate this conclu
sion. However, at ylh > 20, the data for the three configu
rations diverge due to wall effects. In Fig. 3, the estimated
maximum uncertainty in the ordinate and the abscissa is ± 0.12.
(Stated uncertainty value also applies to Figs. 5 and 7.)

One set of models (A = 30 deg, h = 1.12 em) were designed
with conical-lip (CL) and vortex-trough (VT) base modifica
tions (see Fig. 4). The CL model included a variable lip radius;
Le., the lip radius varied linearly with y from 0 at y = 0 to
0.6 h at the downstream corner, while the VT model contained
streamwise "V" grooves (30 deg half-angle, 0.635 em depth,

Step
Seconda ry vortex flow
Secondary sep line
Primary vortex flow
Reattachment line

Reattachment point

Nominal end

condition

Al Sketch of geometry

step
height. h

B) View A-A

Cl Actual oil f101V sample (A =6I:P. h =2. 38cm and Veo =21 m/s I

Fig. 1 The swept rearward·faclng step geometry and flow leatures

Reynolds number (based on the distance from the leading edge
of the splitter plate to the step at midspan) was 1.4 x 106 (V00

= 21 m/s). The pertinent flow geometry is shown in Fig. 1,
along with general flow features in the three-dimensional sep
arated-flow region, as deduced from surface oil flow studies
and flow angularity measurements. Reattachment length data
presented herein were obtained exclusively using the oil drop

B) Conical lip (Configuration Cl)A) Basic base (Conllguration BB)

C) Vortex troughs (Configuration VT)

Fig. 4 Basic, conical lip and vortex trough geometries

o

.00 end
condition

o

600 end
condition

Fig. 2 Geometric modifications to step Initial conditions
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Fig. 5 Reattachment distance perpendicular to step versus spanwise 
coordinate for configurations BB, CL, and VT(A = 30 deg, h = 1.12 cm, 
and Re = 1.4 x 10e) 
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Fig. 7 Reattachment distance perpendicular to step versus spanwise 
coordinate for the 60 deg basic swept-step model with and without 
fences (Re = 1.4 x 1 0 e a n d / i = 1.27 cm) 

A) Fence *1 
Freestream. 
Direction 

¥ZZZZA 
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B)Fence #2 
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Note: A11 dimensions are in cm 

Fig. 6 Sketch of boundary-layer fences 

25.4 to 43.2 cm length, 3.18 cm between groove centers) in the 
surface upstream of the step. Figure 5 indicates the reduction 
in the separated-flow region achieved with the aforementioned 
modifications. A pair of streanvwise vortices is generated in 
each vortex trough [8]. These vortex pairs energize the sepa
rated-flow region, resulting in almost a 30 percent reduction 
to the maximum value of the non-dimensionalized reattach
ment distance, R/h. The effect of the finite lip radius is to 
delay separation and cause a reduction to the reattachment 
distance. Data presented in Fig. 5 suggest that the reattachment 
distance decreases with increasing lip radius. Therefore, a con
stant large lip radius is desirable for minimum reattachment 
distance. 

Streamwise boundary-layer fences, as sketched in Fig. 6, 
were installed in the separated-flow region of the 60 deg basic 
swept-step model (h = 1.27 cm) to determine their effect on 
reattachment distance. Similar surface oil flow patterns result 
from the two fence geometries. The reattachment distance data 
determined from surface oil flow patterns are displayed in Fig. 
7 for one of several fence spacings examined. The reattachment 
distance increases from a minimum value at each fence-step 
junction to a maximum value at the adjacent fence, where a 
new vortex originates. Real-time surface oil flow patterns in

dicated that the fences turn the vortex flows toward the stream-
wise direction—probably causing either vortex liftup or 
breakdown in the process. Each fence geometry had essentially 
the same effect on the separated flow in terms of the reat
tachment distance. The general effect of the fences was to 
reduce the region of separated flow by over 50 percent for the 
fence spacing shown in Fig. 6. The effect of the fences and 
other modifications on base pressure was inconclusive due to 
an inadequate number of pressure orifices in the base region. 

The present results have shown that the reattachment dis
tances downstream of swept steps are independent of the up
stream initial geometric condition. It has also been shown that 
simple base modifications can considerably reduce flow sep
aration associated with the swept-step geometry. Further sys
tematic study is being conducted (including detailed base 
pressure measurements) to determine if the present reduction 
in the extent of the separated-flow region can be optimized by 
varying control device geometry and translated into a reduction 
of the attendant drag. 

References 
1 Kukainis, J., "Effects of Three Boundary-Layer Control Devices on a 

Quasi-Two-Dimensional Swept Wing at High Subsonic Speeds," Arnold En
gineering Development Center, AEDC-TR-69-251, Dec. 1969. 

2 Rao, D. M., and Johnson, T. D., Jr., "Investigation of Leading-Edge 
Devices for Drag Reduction of a 60-deg. Delta Wing at High Angles of Attack," 
AIAA-80-0310, AIAA 18th Aerospace Sciences Meeting, Pasadena, Calif., 14-
16 Jan. 1980. 

3 Peake, D. J., and Owen, F. K., "Control of Forebody Three-Dimensional 
Flow Separations," NASA TM-78593, May 1979. 

4 Taylor, A. H., and Huffman, J. K., "Vortex Lift Augmentation by Suction 
on a 60° Swept Gothic Wing," AIAA-82-0231, AIAA 20th Aerospace Sciences 
Meeting, Orlando, Fla., 11-14, Jan. 1982. 

5 Rao, D. M., and Johnson, T. D., Jr., "Alleviation of the Subsonic Pitch-
Up of Delta Wings," AIAA-82-0129, AIAA 20th Aerospace Sciences Meeting, 
Orlando, Fla., 11-14, Jan. 1982. 

6 Mattick, A. A., and Stollery, J. L., "Increasing the Lift-Drag Ratio of a 
Flat Delta Wing," AeronauticalJournal, Oct. 1981, pp. 379-386. 

7 Selby, G. V., "Phenomenological Study of Subsonic Turbulent Flow Over 
a Swept Rearward-Facing Step," Ph.D. dissertation, University of Delaware, 
June 1982. 

8 Zumwalt, G. W., "Experiments on Three-Dimensional Separating-and-
Reattaching Flows," AIAA-81-0259, AIAA 19th Aerospace Sciences Meeting, 
St. Louis, Mo., 12-15, Jan. 1981. 

Journal of Fluids Engineering MARCH 1989, Vol. 111/101 

Downloaded 02 Jun 2010 to 171.66.16.94. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Effects of Excitation on Turbulence Levels in a Shear 
Layer 

M. Nallasamy1 and A. K. M. F. Hussain2 

Introduction 
The phenomenon of turbulence suppression due to con

trolled excitation in circular jets was observed by Vlasov and 
Ginovskiy [1] and Petersen et al. [2] at certain frequencies of 
excitation. The first detailed study of turbulence suppression 
in free shear flows, however, was due to Zaman and Hussain 
[3]. They investigated the turbulence suppression due to con
trolled excitation (introduced acoustically or by ribbon oscil
lation) in a number of experimental facilities—circular jets, a 
plane jet, and a single-stream plane mixing layer. They found 
that the turbulence suppression (reduction in velocity fluctu
ations and Reynolds stress) in these shear flows was maximum 
when the shear layer was forced at around the maximally 
unstable frequency, i.e., St9 « 0.017 (Michalke [4]). Here, Sts 
(=f9e/Ue) is the excitation Strouhal number,/is the forcing 
frequency, 6e and Ue are the exit boundary layer momentum 
thickness and free stream velocity, respectively. The experi
ments were carried out with amplitudes of excitation in the 
range of 0.3 to 1 percent of uj-/Ue; uf is the rms velocity at 
the frequency of excitation. Hussain and Hasan [5] recently 
demonstrated that the turbulence suppression leads to jet noise 
reduction as well. A numerical simulation of the phenomenon 
of turbulence suppression in a plane shear layer by Nallasamy 
and Hussain [6] showed that at low amplitudes of excitation, 
the maximum suppression occurs at a Strouhal number of 
0.017, consistent with experimental observation [3]. However, 
for high amplitudes of excitation, the above Strouhal number 
preference is lost. That is, the maximum turbulence suppres
sion no longer occurs at the maximally unstable frequency, 
but occurs at a higher frequency. The present note presents 
experimental results of a study of turbulence suppression as a 
result of high amplitudes of external excitation in an axisym-
metric mixing layer. 

Experiments 
This study was carried out in a large axisymmetric mixing 

layer. An initially laminar axisymmetric mixing layer of a jet 
(of diameter D = 27 cm) was subjected to high amplitudes of 
controlled sinusoidal excitation at various frequencies (one 
frequency at a time). A periodic disturbance of a given fre
quency and amplitude was applied through an axisymmetric 
slit, at the jet lip [7], Fig. 1. The excitation was induced at the 
initiation of the shear layer without forcing the bulk flow. 
Data were taken using a miniature X-mre probe traversed by 
a computer. Velocity signals were digitized by an A/D con
verter at the rate of 51 Hz and then the mean and fluctuating 
components were computed. The rms value of the streamwise 
velocity fluctuations ut were measured using a spectrum an
alyzer (spectroscope SD335). For the measurements reported 
in this note, the initial boundary layer was laminar, the mean 
velocity profile agreeing with the Blasius profile (the agreement 
of the shape factors was excellent). The true initial condition 
must be measured upstream of the jet lip (i.e., the separation 
point). For an initially laminar boundary layer, it has been 
found that the mean velocity profile measured just downstream 
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of the lip, in the region of the jet where transformation from 
the confined nozzle flow to a free shear layer takes place, 
agrees well with the Blasius profile (see also references [8 and 
9]). 

The initial condition (namely the profiles of mean and fluc
tuating velocities) and the amplitude of excitation were meas
ured atx/0e = 20. This is an optimum location; it is sufficiently 
downstream from the lip that the flow is independent of the 
excitation slit details; it is well within the range of linear growth 
in x within the shear layer. The frequency and the amplitude 
of excitation were varied at a constant exit velocity (Ue =15 
m/s) of the jet as in the experiments of Zaman and Hussain 
[3]. The exit boundary layer momentum thickness was 0.374 
mm. Four amplitudes of excitation, namely u}/Ue - 0.5, 2.5, 
3.5 and 4.5 percent were considered. The frequency (i.e., St9) 
of excitation was varied from 0.006 to 0.025. 

Discussion of Results 
We define a suppression factor as the ratio of u^/UuX where 

u^ is the maximum longitundinal (rms) velocity fluctuation at 
a section with excitation and u'ux is that without excitation at 
the same section. The variation of the suppression factor with 
the amplitude of excitation is shown in Fig. 2. The figure shows 
the suppression factor at a distance x/de = 200 where the 
suppression was found to be the maximum. We see that at an 
amplitude of 0.5, the maximum suppression occurs at the max
imally unstable frequency predicted by the linear theory, St9 
= 0.017, as in the experiments of Zaman and Hussain. How
ever, the magnitude of the maximum suppression in the present 
study is only 12 percent in contrast to 80 percent in their study. 
This difference in magnitudes stems from the definition of the 
suppression factor. They define the suppression factor as the 
ratio of the longitudinal velocity fluctuations at a point with 
and without excitation. The suppression of 80 percent was 
found at a point x = 10 cm in the jet, and y = 0.5D-1.27 cm 
(D is the diameter of the jet). Such a definition of the sup
pression factor based on the intensities at a single point may 
not adequately characterize the turbulence in the flow field, 
for the following reasons: when a shear layer is acoustically 
excited, the vortical structures are displaced in radial/axial 
directions, pairing of vortical structures is induced, the location 
of vortex pairing is changed etc. It is thus possible that the 
intensities at a point with and without the structure are sig
nificantly different. The suppression defined on the basis of 
the peak intensities at any section with and without excitation 
as in the present study better represents the turbulence sup
pression. With the increase of amplitude to 2 percent, the 
maximum turbulence suppression occurs at a higher Strouhal 
number of about 0.0194. For an amplitude of 3.5 percent the 
maximum suppression still occurs at 0.0194. With a further 
increase in the amplitude of excitation to 4.5 percent, the 
maximum suppression shifts to Stfl = 0.022. Thus, we see that 
the maximum turbulence suppression shifts to higher Strouhal 
numbers as the amplitude of excitation is increased in the range 
of amplitudes studied. This confirms the observation made in 
the numerical simulation of an excited shear layer [6]. 

The magnitude of suppression as a function of downstream 
distance is shown in Fig. 3, for four different Strouhal num
bers, St„ = 0.0067, 0.017, 0.0135, and 0.022, at the excitation 
amplitude of 4.5 percent. First we observe that the maximum 
suppression occurs at about the same downstream distance, 
x/6e = 200, for all Strouhal numbers considered. Second, the 
maximum turbulence suppression now occurs at the higher 
Strouhal number of 0.022, rather than at 0.017. It is instructive 
to note that the axial location at which maximum suppression 
occurs is about 200 9e in contrast with about 400 6e observed 
in the previous study [3]. Thus it appears that the location of 
the maximum suppression is dependent on the initial condition 
of the shear layer. 
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TO EXCITATION BOX 

Fig. 1 Sectional view of the shear layer excitation mechanism [7] 

Fig. 2 Variation of turbulence suppression with forcing frequency: Ef
fect of forcing amplitude (uncertainty in turbulence intensity in the order 
of 3 percent) 

Fig. 3 Axial variation of turbulence suppression for an excitation am
plitude of 4.5 percent: Effect of forcing frequency (uncertainty in tur
bulence intensity in the order of 3 percent) 

An examination of the longitudinal velocity spectrum at 
different x along the straight line corresponding to U/Ue = 
0.7, shows that a higher amplitude forcing can hasten transition 
to turbulence only when the excitation frequency is greater 
than the maximally unstable frequency [10]. Table 1 shows the 
approximate axial location, x/de at which the transition is com
plete for each frequency of excitation at an amplitude of 4.5 
percent. The transition is taken to be complete when the peaks 
in the spectrum disappear and it resembles that of a fully 
turbulent flow. A similar definition for the completion of 
transition was employed by Sato and Saito [11] in their tran
sition studies. At frequencies greater than the maximally un
stable frequency, earlier saturation, lower level of saturation 
and faster transition occur. These nonlinear interactions lead 
to the observed turbulence suppression at high amplitudes of 
excitation. The faster transition appears to be the result of a 
nonlinear interaction mode which is the growth suppression 
[11] induced by a large amplitude. Recently Gaster et al. mod
eled the large scale vortex structures that occur in a high am
plitude forced mixing layer by a linear stability theory [12]. 
They compared the magnitude and phase of the velocity fluc
tuations across various sections of the flow and found re
markable agreement with measurements. The overall integral 
behavior involving the amplification along the mixing layer 
was found to compare less favorably with calculations due to 
the neglect of nonlinear terms. It appears that the nonlinear 
interactions in the turbulence suppression at high amplitudes 

Table 1 

Frequency, 
St„ 
Approximate 
x/ee for 
completion 
of transition 

0.0 

200 

0.0067 

500 

0.0135 

335 

0.017 

270 

0.0194 

170 

0.022 

135 

of forcing of a mixing layer can not be explained by employing 
a simple extension of the linear theory. 

Conclusions 
The present experimental investigation confirms the nu

merical simulations: at high amplitudes of excitation, the max
imum turbulence suppression no longer occurs at the maximally 
unstable frequency, but occurs at a higher St# depending on 
the amplitude. 
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Comment on the Loss of Vorticity in the Near Wake of 
Bluff Bodies 

M. M. Zdravkovich1 

Fage and his co-workers [1,2] made a remarkable discovery in 
the 20's that only half of the vorticity generated by bluff 
bodies remained concentrated in shed vortices. This belated 
comment reconsiders Fage's method of "loss" calculation by 
examining nonlinear effects. The ignored effect of three 
dimensional distortion of vortex filaments before roll up 
might be another important cause for the "apparent" loss of 
vorticity. 

1 Introduction 
Fage and Johansen [1, 2] have noted that less than half of 

the '' vorticity'' generated at the separation could be found in 
the fully formed vortices. This large "loss of vorticity" was 
confirmed by subsequent researchers as cited by Cantwell and 
Coles [3]. 

Fage and Johansen [1] calculated the rate of vorticity shed 
from each side of the bluff body in unit time by assuming that 
the width of the vortex sheet is infinitesimally small and that 
the time-averaged mean velocities on the outer and inner edges 
of the shear layer are v{ and v2, respectively. The elementary 
circulation 6T around a rectangle containing a length 5s of the 
vortex sheet is 5T = (vl - v2) 8s and 8s/8t= Vi{i)^ + v2) hence 

8Y=(v\-v\)8t/2 (1) 

Note that the mean velocity of the vortex sheet as written 
implies a linear variation of the velocity. This is true neither 
for the boundary layer nor for the shear layer. The total 
amount of circulation leaving each separation point during 
time Tis 

Y=Vi(v\-vl)T (2) 

Fage and Johansen [1] measured vx and v2 along the 
separated shear layer up to the rolling up. They found that loss 
of circulation amounted to 8 percent and was mostly due to 
the viscous increase in v2. At a distance of nine widths behind 
the plate about 60 percent of the vorticity leaving the edge is 
passing downstream in the form of large vortices having a 
definite individuality. 
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Fage and Johansen [1] inferred that an appreciable dissipa
tion of vorticity occurs at the back of the plate. By counting 
fluid particles, Nielsen [4] found that only 4 percent of the 
generated vorticity was entrained into the region close to the 
rear of the body. 

Fage and Johansen [1] further argued that a part of vorticity 
is dissipated immediately behind the plate, by a mixture of 
positive and negative vorticity from the two edges, and the rest 
possibly passes downstream as "unattached vortices," which 
are too small to appreciably affect the measured velocity fluc
tuations outside the wake. 

Abernathy and Kronauer [5] simulated numerically a 
nonlinear interaction of two inviscid, infinite and uniform 
vortex sheets, initially a fixed distance apart, and subjected to 
a sinusoidal perturbation. Only one cluster of vorticity was 
formed for the spacing ratio 0.28 and contained net 62 percent 
of the vorticity i.e., +81 percent and - 19 percent. It is still 
not clear how and whether the positive and negative vorticity 
will anihilate each other in a real viscous flow. The mechanism 
of mixing positive and negative vorticity has not yet been 
studied experimentally. In this note we reconsider the other 
possible mechanisms which could account for the loss of 
vorticity. 

2 Reconsideration of the "Loss" Calculation 
Fage and Johansen [1] based their calculation on the time-

averaged vorticies v{ and v2
 a n ^ n o t o n t n e actual fluctuating 

velocities t>, and v2. The velocity fluctuations can be expanded 
in Fourier series and if only the leading term is retained then: 

U] (t) = vl + Av{ sinait, v2(t) = v2 + Av2 sin(atf + kir)) (3) 

where: w = 2irf, / i s the shedding frequency and k represents 
the phase shift; it is expected that k= 0 when a coherent vortex 
grows further downstream. 

Equation (3) yields a new expression for circulation after in
tegration over one cycle. 

T_{v\-v\) (Av\-Av\) 1 
2 4 / 

Note that if Av{ = Av2 the Fage and Johansen formula is 
recovered. 

Figure 1 shows measurements of the amplitude of velocity 
fluctuation Av2 and the mean velocity vx around a circular 
cylinder by Dwyer and McCroskey [6]. The maximum value of 
Av2 = 0.28 reduces the circulation T in equation (4) by 0.02. 
Toebes [7] traversed the near wake 0.6 diameters downstream 
of the cylinder and found Ay2 = 0.39. The second term in 
equation (4) yields 0.04. This value is still one order of 
magnitude less than the loss. It is evident in Fig. 1 that the 
maximum mean velocity around the cylinder is at 65 deg. 
There is an apparent loss of circulation of 10 percent between 
9 = 65 and 78 deg due to the flow retardation caused by the 
adverse pressure gradient. 

1-6 - - 0-4 

SV2 

0 ' 10° 20° 30s 40° 50" 60° 70s 80° 90° 
ANGULAR POSITION, » 

Fig. 1 Angular distribution of mean and fluctuating velocities around a 
circular cylinder at Re = 1.06 x 10s (from Dwyer and McCroskey, 1973) 
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the time-averaged mean velocities on the outer and inner edges 
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Note that the mean velocity of the vortex sheet as written 
implies a linear variation of the velocity. This is true neither 
for the boundary layer nor for the shear layer. The total 
amount of circulation leaving each separation point during 
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Fage and Johansen [1] measured vx and v2 along the 
separated shear layer up to the rolling up. They found that loss 
of circulation amounted to 8 percent and was mostly due to 
the viscous increase in v2. At a distance of nine widths behind 
the plate about 60 percent of the vorticity leaving the edge is 
passing downstream in the form of large vortices having a 
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Fage and Johansen [1] inferred that an appreciable dissipa
tion of vorticity occurs at the back of the plate. By counting 
fluid particles, Nielsen [4] found that only 4 percent of the 
generated vorticity was entrained into the region close to the 
rear of the body. 

Fage and Johansen [1] further argued that a part of vorticity 
is dissipated immediately behind the plate, by a mixture of 
positive and negative vorticity from the two edges, and the rest 
possibly passes downstream as "unattached vortices," which 
are too small to appreciably affect the measured velocity fluc
tuations outside the wake. 

Abernathy and Kronauer [5] simulated numerically a 
nonlinear interaction of two inviscid, infinite and uniform 
vortex sheets, initially a fixed distance apart, and subjected to 
a sinusoidal perturbation. Only one cluster of vorticity was 
formed for the spacing ratio 0.28 and contained net 62 percent 
of the vorticity i.e., +81 percent and - 19 percent. It is still 
not clear how and whether the positive and negative vorticity 
will anihilate each other in a real viscous flow. The mechanism 
of mixing positive and negative vorticity has not yet been 
studied experimentally. In this note we reconsider the other 
possible mechanisms which could account for the loss of 
vorticity. 

2 Reconsideration of the "Loss" Calculation 
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the phase shift; it is expected that k= 0 when a coherent vortex 
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tegration over one cycle. 
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Note that if Av{ = Av2 the Fage and Johansen formula is 
recovered. 

Figure 1 shows measurements of the amplitude of velocity 
fluctuation Av2 and the mean velocity vx around a circular 
cylinder by Dwyer and McCroskey [6]. The maximum value of 
Av2 = 0.28 reduces the circulation T in equation (4) by 0.02. 
Toebes [7] traversed the near wake 0.6 diameters downstream 
of the cylinder and found Ay2 = 0.39. The second term in 
equation (4) yields 0.04. This value is still one order of 
magnitude less than the loss. It is evident in Fig. 1 that the 
maximum mean velocity around the cylinder is at 65 deg. 
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Fig. 1 Angular distribution of mean and fluctuating velocities around a 
circular cylinder at Re = 1.06 x 10s (from Dwyer and McCroskey, 1973) 
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NON-LINEAR EFFECT 

.JD EFFECT 

CIRCULATION IN 
\ FULLY FORMED VORTEX 

Fig. 2 Schematic compilation of vorticity losses (applicable only in the 
upper subcritical range of Reynolds numbers) 

Sears [8] considered circulation production for the fluc
tuating separation point. He derived an additional term, 
vsepvlt that was negative. He argued that in flows with flue- References 
tuating separation points the circulation calculated by equa
tion (2) would be probably too large. At present there is no ex
perimental data to verify his inference. However, Dywer and 
McCroskey [6] observed the fluctuating separation and 
estimated to be in the range ± 5 deg. 

Figure 2 shows schematically losses of circulation within the 
near-wake region. Two question marks appear for the 
unknown losses due to the mixing of positive and negative vor
ticity and three-dimensional effects. 

3 Apparent Loss Due to Three-Dimensional Effects 

Turbulent two-dimensional shear layers develop streamwise 
vortices as shown by Wei and Smith [9] and Cimbala et al. 
[10]. The slanted orientation of vortex filaments inside the free 
shear layers produces an apparent deficit in the spanwise vor
ticity component parallel to the cylinder axis. This unac
counted vorticity loss is depicted in Fig. 2 by (?). It can be in
ferred that if the "mean" slant angle is in the range 15 to 30 
deg the loss would be 4 to 13 percent, respectively. The actual 
value is unknown at present. 

4 Conclusion 

It appears that the rate of generation of the vorticity by the 
fluctuating free shear layer is always less than that calculated 
by using the time-averaged velocities t>, and v2. One part of 
the loss of vorticity is "apparent" due to an overestimate of 
the generation of vorticity in the fluctuating free shear layer. 
However, this nonlinear effect accounts only for a small 
amount of vorticity. 

The three-dimensional distortion of vortex filaments in the 
free shear layer causes an apparent deficit of circulation if on
ly the component parallel to the cylinder axis is measured. The 
mixture of positive and negative vorticity proposed by Fage 
and Johansen [1, 2] is a long standing puzzle that deserves fur
ther research attention. It is hoped that this note will stimulate 
interest on the topic. 
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The Fluid Mechanics Committee of the ASME Fluids Engineering Division is sponsoring a Symposium on Nonsteady Fluid Dynamics for 
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theoretical and experimental, with particular emphasis on: 
1. Nonsteady viscous flows including boundary layers, wakes in two and three dimensions. 
2. Nonsteady inviscid flows with particular emphasis on computational methods. 
3. Nonsteady viscous-inviscid interactions including cavity flows, injected flows, nonsteady separation, nonsteady stall phenomena and 
Coanda effect flows. 
4. Measurement techniques in nonsteady flows including instrumentation, data acquisition, data management, and digitization of flow 
visualizations. 
5. Interaction between fluid and solid motions, as for example in aeroelasticity, and flow-induced vibrations. 
In addition to the presentation of formal papers, the symposium expects to feature several keynote presentations and panel discussions. 

Papers reporting the results of basic research, analytical or experimental, in the fundamental fluid dynamics of nonsteady flows of all 
types are welcomed. Papers of this type are expected to reveal new knowledge, either concepts or techniques, which have the potential to lead 
to a clearer understanding of the basic fluid processes in nonsteady flows. 
An extended abstract (about 1000 words accompanied by a few key figures) should be submitted prior to August 1, 1989 to the organizers: 
Professor James A. Miller Professor Demetri P. Telionis 
Code 67 MO Department of Engineering Science and Mechanics 
Department of Aeronautics Virginia Polytechnic Institute and State University 
Naval Postgraduate School Blacksburg, VA 24061 
Monterey, CA 93943 (703)231-7492 
(408) 646-2897 

Authors will be notified by August 29, 1989 and asked to submit five copies of the manuscripts for review. Authors will be notified of the 
results of the review by December 15, 1989. Final Mats are due by March 1, 1990. All papers must conform to ASME Standards as published 
in the ASME, Journal of Fluids Engineering. 
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